15#define nCopy(n)          n_Copy(n, currRing->cf) 
   16#define nDelete(n)        n_Delete(n, currRing->cf) 
   17#define nMult(n1, n2)     n_Mult(n1, n2, currRing->cf) 
   18#define nAdd(n1, n2)      n_Add(n1, n2, currRing->cf) 
   19#define nIsZero(n)        n_IsZero(n, currRing->cf) 
   20#define nEqual(n1, n2)    n_Equal(n1, n2, currRing->cf) 
   21#define nInpNeg(n)        n_InpNeg(n, currRing->cf) 
   22#define nSub(n1, n2)      n_Sub(n1, n2, currRing->cf) 
   23#define nGetChar()        n_GetChar(currRing->cf) 
   24#define nInit(i)          n_Init(i, currRing->cf) 
   25#define nIsOne(n)         n_IsOne(n, currRing->cf) 
   26#define nIsMOne(n)        n_IsMOne(n, currRing->cf) 
   27#define nGreaterZero(n)   n_GreaterZero(n, currRing->cf) 
   28#define nGreater(a, b)    n_Greater (a,b,currRing->cf) 
   29#define nWrite(n)         n_Write(n, currRing->cf, rShortOut(currRing)) 
   30#define nNormalize(n)     n_Normalize(n,currRing->cf) 
   31#define nGcd(a,b)         n_Gcd(a,b,currRing->cf) 
   32#define nDiv(a, b)        n_Div(a,b,currRing->cf) 
   33#define nInvers(a)        n_Invers(a,currRing->cf) 
   34#define nExactDiv(a, b)   n_ExactDiv(a,b,currRing->cf) 
   35#define nTest(a)          n_Test(a,currRing->cf) 
   37#define nInpMult(a, b)    n_InpMult(a,b,currRing->cf) 
   38#define nPower(a, b, res) n_Power(a,b,res,currRing->cf) 
   39#define nSize(n)          n_Size(n,currRing->cf) 
   40#define nGetDenom(N)      n_GetDenom((N),currRing->cf) 
   41#define nGetNumerator(N)  n_GetNumerator((N),currRing->cf) 
   43#define nSetMap(R)        n_SetMap(R,currRing->cf) 
   46#define nPrint(a)         n_Print(a,currRing->cf) 
   54#if SIZEOF_DOUBE == SIZEOF_LONG 
   55#define SHORT_REAL_LENGTH 16  
   57#define SHORT_REAL_LENGTH 6  
  113char* 
nEati(
char *
s, 
long *
i, 
int m);
 
Coefficient rings, fields and other domains suitable for Singular polynomials.
 
const CanonicalForm int s
 
The main handler for Singular numbers which are suitable for Singular polynomials.
 
void nRegisterCfByName(cfInitCfByNameProc p, n_coeffType n)
 
CanonicalForm ndConvSingNFactoryN(number, BOOLEAN, const coeffs)
 
coeffs(* cfInitCfByNameProc)(char *s, n_coeffType n)
initialize an object of type coeffs by its name, return NULL otherwise
 
number ndReadFd(const ssiInfo *f, const coeffs r)
 
coeffs nFindCoeffByName(char *n)
find an existing coeff by its "CoeffName"
 
void ndNormalize(number &, const coeffs)
 
BOOLEAN(* cfInitCharProc)(coeffs, void *)
initialize an object of type coeff, return FALSE in case of success
 
char * nEati(char *s, int *i, int m)
divide by the first (leading) number and return it, i.e. make monic
 
const char *const nDivBy0
 
number ndGcd(number a, number b, const coeffs)
 
BOOLEAN n_IsZeroDivisor(number a, const coeffs r)
Test whether a is a zero divisor in r i.e. not coprime with char. of r very inefficient implementatio...
 
n_coeffType nRegister(n_coeffType n, cfInitCharProc p)
 
char * nEatLong(char *s, mpz_ptr i)
extracts a long integer from s, returns the rest
 
number ndQuotRem(number a, number b, number *r, const coeffs R)