operations on immediates, that is elements of F_p, GF, Z, Q that fit into intrinsic int, long
More...
|
static long | imm2int (const InternalCF *const imm) |
|
static InternalCF * | int2imm (long i) |
|
InternalCF * | int2imm_p (long i) |
|
InternalCF * | int2imm_gf (long i) |
|
int | imm_isone (const InternalCF *const ptr) |
|
int | imm_isone_p (const InternalCF *const ptr) |
|
int | imm_isone_gf (const InternalCF *const ptr) |
|
int | imm_iszero (const InternalCF *const ptr) |
|
int | imm_iszero_p (const InternalCF *const ptr) |
|
int | imm_iszero_gf (const InternalCF *const ptr) |
|
long | imm_intval (const InternalCF *const op) |
|
int | imm_sign (const InternalCF *const op) |
| imm_sign() - return sign of immediate object. More...
|
|
int | imm_cmp (const InternalCF *const lhs, const InternalCF *const rhs) |
| imm_cmp(), imm_cmp_p(), imm_cmp_gf() - compare immediate objects. More...
|
|
int | imm_cmp_p (const InternalCF *const lhs, const InternalCF *const rhs) |
|
int | imm_cmp_gf (const InternalCF *const lhs, const InternalCF *const rhs) |
|
InternalCF * | imm_add (const InternalCF *const lhs, const InternalCF *const rhs) |
|
InternalCF * | imm_add_p (const InternalCF *const lhs, const InternalCF *const rhs) |
|
InternalCF * | imm_add_gf (const InternalCF *const lhs, const InternalCF *const rhs) |
|
InternalCF * | imm_sub (const InternalCF *const lhs, const InternalCF *const rhs) |
|
InternalCF * | imm_sub_p (const InternalCF *const lhs, const InternalCF *const rhs) |
|
InternalCF * | imm_sub_gf (const InternalCF *const lhs, const InternalCF *const rhs) |
|
InternalCF * | imm_mul (InternalCF *lhs, InternalCF *rhs) |
|
InternalCF * | imm_mul_p (const InternalCF *const lhs, const InternalCF *const rhs) |
|
InternalCF * | imm_mul_gf (const InternalCF *const lhs, const InternalCF *const rhs) |
|
InternalCF * | imm_div (const InternalCF *const lhs, const InternalCF *const rhs) |
|
InternalCF * | imm_divrat (const InternalCF *const lhs, const InternalCF *const rhs) |
|
InternalCF * | imm_div_p (const InternalCF *const lhs, const InternalCF *const rhs) |
|
InternalCF * | imm_div_gf (const InternalCF *const lhs, const InternalCF *const rhs) |
|
InternalCF * | imm_mod (const InternalCF *const lhs, const InternalCF *const rhs) |
|
InternalCF * | imm_mod_p (const InternalCF *const, const InternalCF *const) |
|
InternalCF * | imm_mod_gf (const InternalCF *const, const InternalCF *const) |
|
void | imm_divrem (const InternalCF *const lhs, const InternalCF *const rhs, InternalCF *&q, InternalCF *&r) |
|
void | imm_divrem_p (const InternalCF *const lhs, const InternalCF *const rhs, InternalCF *&q, InternalCF *&r) |
|
void | imm_divrem_gf (const InternalCF *const lhs, const InternalCF *const rhs, InternalCF *&q, InternalCF *&r) |
|
InternalCF * | imm_neg (const InternalCF *const op) |
|
InternalCF * | imm_neg_p (const InternalCF *const op) |
|
InternalCF * | imm_neg_gf (const InternalCF *const op) |
|
operations on immediates, that is elements of F_p, GF, Z, Q that fit into intrinsic int, long
Definition in file imm.h.
imm_cmp(), imm_cmp_p(), imm_cmp_gf() - compare immediate objects.
For immediate integers, it is clear how this should be done. For objects from finite fields, it is not clear since they are not ordered fields. However, since we want to have a total well order on polynomials we have to define a total well order on all coefficients, too. We decided to use simply the order on the representation as `int's of such objects.
- See also
- CanonicalForm::operator <(), CanonicalForm::operator ==()
Definition at line 237 of file imm.h.
238{
240 return 0;
242 return 1;
243 else
244 return -1;
245}