32 const long _maxdeg, number *_p,
const bool _homog =
true );
74 const int _var,
const int _tdg,
75 const rootType _rt,
const int _anz );
93 bool swapRoots(
const int from,
const int to );
181#define SIMPLEX_EPS 1.0e-12
gmp_complex numbers based on
friend lists listOfRoots(rootArranger *, const unsigned int oprec)
rootArranger(const rootArranger &)
complex root finder for univariate polynomials based on laguers algorithm
void sortre(gmp_complex **r, int l, int u, int inc)
gmp_complex & operator[](const int i)
bool laguer_driver(gmp_complex **a, gmp_complex **roots, bool polish=true)
Given the degree tdg and the tdg+1 complex coefficients ad[0..tdg] (generated from the number coeffic...
void computegx(gmp_complex **a, gmp_complex x, int m, gmp_complex &f0, gmp_complex &f1, gmp_complex &f2, gmp_float &ex, gmp_float &ef)
gmp_complex * getRoot(const int i)
void fillContainer(number *_coeffs, number *_ievpoint, const int _var, const int _tdg, const rootType _rt, const int _anz)
void laguer(gmp_complex **a, int m, gmp_complex *x, int *its, bool type)
Given the degree m and the m+1 complex coefficients a[0..m] of the polynomial, and given the complex ...
void divlin(gmp_complex **a, gmp_complex x, int j)
void sortroots(gmp_complex **roots, int r, int c, bool isf)
void divquad(gmp_complex **a, gmp_complex x, int j)
bool swapRoots(const int from, const int to)
void computefx(gmp_complex **a, gmp_complex x, int m, gmp_complex &f0, gmp_complex &f1, gmp_complex &f2, gmp_float &ex, gmp_float &ef)
void solvequad(gmp_complex **a, gmp_complex **r, int &k, int &j)
gmp_complex & evPointCoord(const int i)
bool isfloat(gmp_complex **a)
rootContainer(const rootContainer &v)
void checkimag(gmp_complex *x, gmp_float &e)
bool solver(const int polishmode=PM_NONE)
Linear Programming / Linear Optimization using Simplex - Algorithm.
BOOLEAN mapFromMatrix(matrix m)
void simp2(mprfloat **a, int n, int l2[], int nl2, int *ip, int kp, mprfloat *q1)
void simp3(mprfloat **a, int i1, int k1, int ip, int kp)
void simp1(mprfloat **a, int mm, int ll[], int nll, int iabf, int *kp, mprfloat *bmax)
matrix mapToMatrix(matrix m)
vandermonde system solver for interpolating polynomials from their values
poly numvec2poly(const number *q)
number * interpolateDense(const number *q)
Solves the Vandermode linear system \sum_{i=1}^{n} x_i^k-1 w_i = q_k, k=1,..,n.
const Variable & v
< [in] a sqrfree bivariate poly