102{
107 *s1, *s2;
109 if (
B->isFractional()) {
111 s1->skalmult(
B->viewBasisDen(), C);
113 } else {
115 }
116 if (
A->isFractional()) {
118 s2->skalmult(
A->viewBasisDen(), C);
123 } else {
125 }
126 } else {
128 }
130
131 if (
A->isFractional())
132 delete s2;
133 if (
B->isFractional())
134 delete s1;
135
137 if (!(modA =
A->viewMin())) {
138 modA =
A->viewNorm();
139 }
140 if (!(modB =
B->viewMin())) {
141 modB =
B->viewNorm();
142 }
144 if (modA && modB) {
148 } else {
152 }
153 delete r;
156 }
159 D->setBasisDenTransfer(
den);
160
164 delete t2;
166}
number det()
det (via LaPlace in general, hnf for euc. rings)
void hnf()
transforms INPLACE to HNF
bigintmat * modhnf(number p, coeffs c)
computes HNF(this | p*I)
void simplifyContentDen(number *den)
ensures that Gcd(den, content)=1 enden hier wieder
number get(int i, int j) const
get a copy of an entry. NOTE: starts at [1,1]
void concatcol(bigintmat *a, bigintmat *b)
void copySubmatInto(bigintmat *, int sr, int sc, int nr, int nc, int tr, int tc)
copy the submatrix of b, staring at (a,b) having n rows, m cols into the given matrix at pos....
coeffs basecoeffs() const
static FORCE_INLINE number n_Mult(number a, number b, const coeffs r)
return the product of 'a' and 'b', i.e., a*b
static FORCE_INLINE number n_Copy(number n, const coeffs r)
return a copy of 'n'
static FORCE_INLINE number n_Gcd(number a, number b, const coeffs r)
in Z: return the gcd of 'a' and 'b' in Z/nZ, Z/2^kZ: computed as in the case Z in Z/pZ,...
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete 'p'
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
The main handler for Singular numbers which are suitable for Singular polynomials.