Build. Blocks
Comb. Appl.
HCA Proving
Arrangements
Branches
Classify
Coding
Deformations
Equidim Part
Existence
Finite Groups
Flatness
Genus
Hilbert Series
Membership
Nonnormal Locus
Normalization
Primdec
Puiseux
Plane Curves
Saturation
Solving
Space Curves
Spectrum
Versal Deformation - Base Space
C is given by the 2x2-minors of the matrix:
over C[[x,y,z,u,v]].

LIB "deform.lib";
ring r=0,(x,y,z,u,v),ds;
matrix m[2][4]=x,y,z,u,y,z,u,v;
ideal f0=minor(m,2);

versal(f0);
==> // Result belongs to ring Px.
// Equations of total space of miniversal deformation are
// given by Fs, equations of miniversal base space by Js.
// Make Px the basering and list objects defined in Px by
// typing:
setring Px; show(Px);
setring Px;
Js;
==> Js[1,1]=BD
Js[1,2]=AD-D2
Js[1,3]=-CD

Sao Carlos, 08/02 http://www.singular.uni-kl.de