Build. Blocks
Comb. Appl.
HCA Proving
Arrangements
Branches
Classify
Coding
Deformations
Equidim Part
Existence
Finite Groups
Flatness
Genus
Hilbert Series
Membership
Nonnormal Locus
Normalization
Primdec
Puiseux
Plane Curves
Saturation
Solving
Space Curves
Spectrum
MuPAD- SINGULAR Connection - Primdec Demo
Task: Using MuPAD, plot the variety given by the ideal

I=(y2z5-x2y2z2+y2z4-z6-z5+x4-x2z2,-y3z3+yz4+x2yz).

Step 0: Load the (MuPAD) library sing.mu and define I:
>> read("sing.mu"):
>> Ideal:=Dom::Ideal(Dom::DistributedPolynomial([x,y,z],Dom::Rational)):
>> Id:=Ideal([poly(...,[x,y,z]),poly(...)]):
Step 1: Calculate a primary decomposition of I using Singular.
>> primDec:=sing::primdecGTZ(Id)):
>> primeComps:=map(primDec, op, 2);
[[x^2-y^2*z^2+z^3],[x^4,z],[y,x^2-z^2-z^3]]
Step 2: For each prime component, calculate the normalization of the radical, i.e., a parametrization using Singular.
>> paramComps:=map(primeComps, sing::parametrize)
[[s^2*t-t^3,s,s^2-t^2], [0,s,0], [s^3-s,0,s^2-1]]
Step 3: Plot the parametrizations using MuPAD.
>> plot3d([Mode=Surface,paramComps[1],s=[-2..2],t=[-2..2]]);


Sao Carlos, 08/02 http://www.singular.uni-kl.de