Build. Blocks
Comb. Appl.
HCA Proving
Arrangements
Branches
Classify
Coding
Deformations
Equidim Part
Existence
Finite Groups
Flatness
Genus
Hilbert Series
Membership
Nonnormal Locus
Normalization
Primdec
Puiseux
Plane Curves
Saturation
Solving
Space Curves
Spectrum
Ring Normalization - Sturmfels example

Compute the normalization of the following subvariety of P8 ( K = Z/32003 Z )

V = { wy-vz=0 , vx-uy=0 , tv-sw=0 , su-bv=0 , tuy-bvz=0 }
LIB "normal.lib";
ring r=32003,(b,s,t,u,v,w,x,y,z),dp;
ideal i=wy-vz,vx-uy,tv-sw,su-bv,tuy-bvz;
list NN = normal(i); // takes about 6 sec
==> 'normal' created a list of 3 ring(s).
NN[1];
==> // characteristic : 32003
// number of vars : 6
// block 1 : ordering dp
// : names T(1) T(2) T(3) T(4) T(5) T(6)
// block 2 : ordering C
def R1=NN[1]; def R2=NN[2]; def R3=NN[3];
setring R1; setring R2; setring R3;
norid; norid; norid;
==> norid[1]=0
==> norid[1]=0
==> norid[1]=wy-vz
norid[2]=ty-sz
norid[3]=wx-uz
norid[4]=vx-uy
norid[5]=tx-bz
norid[6]=sx-by
norid[7]=tv-sw
norid[8]=tu-bw
norid[9]=su-bv
normap; normap; normap;
==> normap[1]=T(1)
normap[2]=T(2)
normap[3]=T(3)
normap[4]=0
normap[5]=0
normap[6]=0
normap[7]=T(4)
normap[8]=T(5)
normap[9]=T(6)
==> normap[1]=T(1)
normap[2]=0
normap[3]=T(2)
normap[4]=T(3)
normap[5]=0
normap[6]=T(4)
normap[7]=T(5)
normap[8]=0
normap[9]=T(6)
==> normap[1]=b
normap[2]=s
normap[3]=t
normap[4]=u
normap[5]=v
normap[6]=w
normap[7]=x
normap[8]=y
normap[9]=z

The normalization (ring) is:

$\displaystyle K[t_1,\dots,t_6]^2
\oplus K[b,s,t,u,v,w,x,y,z]\big/\langle wy\!-\!vz,
ty\!-\!sz, \dots, tu\!-\!bw, su\!-\!bv\rangle $

Sao Carlos, 08/02 http://www.singular.uni-kl.de