Build. Blocks
Comb. Appl.
HCA Proving
Arrangements
Branches
Classify
Coding
Deformations
Equidim Part
Existence
Finite Groups
Flatness
Genus
Hilbert Series
Membership
Nonnormal Locus
Normalization
Primdec
Puiseux
Plane Curves
Saturation
Solving
Space Curves
Spectrum
Moduli Spaces for Space Curve Singularities - An Example
stratum  t1 t2 t3 t4 t5 t6 t7 t8 dim normal form
# 1 0 0 0 0 0 0 0 0 0
z y2 x9
0 z-x7 y
# 2 0 0 0 * 0 0 0 0 1
z y2+x6y x9
0 z-x7 y
# 3 * 0 0   0 0 0 0 2
z y2+t4 x6y x9
x6 z-x7 y
# 4   0 0   * 0 0 0 3
z y2+x14 x9
t1 x6 z-x7 y
# 5   * 0     0 0 0 4
z y2+t4 x6y+t5 x14 x9
x5 z-x7 y
# 6     0     * 0 0 5
z y2+x13 x9
t2 x5+t1 x6 z-x7 y
# 7   0 0   0 t82 0 * 3
z y2+t4 x6y+3x11+x13+t5 x14 x9
t1 x6 z-x7 y
# 8   0 0   * t82 0 * 4
z y2+3x11+x13+x14 x9
t1 x6 z-x7 y
# 9   * 0     t82 0 * 5
z y2+t4 x6y+3x11+x13+t5 x14 x9
x5 z-x7 y
# 10     0     not t82 0 * 6
z y2+x11y+t6 x13 x9
t2 x5+t1 x6 z-x7 y
# 11     *       0   7
z y2+t4x6y+t8x11+t7 x12+t6x13+t5x14 x9
x4 z-x7 y
# 12             *   8
z y2+t8 x11+x12 x9
t3 x4+t2 x5+t1 x6 z-x7 y
Moduli Spaces for Space Curve Singularities

Sao Carlos, 08/02 http://www.singular.uni-kl.de