Build. Blocks
Comb. Appl.
HCA Proving
Arrangements
Branches
Classify
Coding
Deformations
Equidim Part
Existence
Finite Groups
Flatness
Genus
Hilbert Series
Membership
Nonnormal Locus
Normalization
Primdec
Puiseux
Plane Curves
Saturation
Solving
Space Curves
Spectrum
Hertling's Theorem for Semiquasihomogeneous Singularities
type f mu(f) denominators of SN g(f)
P8 z3+y3+xyz+x3 8 3 0
X9 y4+x2y2+x4 9 4 0
J10 y6+x2y2+x3 10 6 0
E12 x3+xy5+y7 12 21 0
E13 x3+xy5+y8 13 15 0
E14 x3+xy6+y8 14 24 0
Z11 x3y+xy4+y5 11 15 0
Z12 x(x2y+xy3+y4) 12 11 0
Z13 x3y+xy5+y6 13 18 0
W12 x4+y5+x2y3 12 20 0
W13 x4+xy4+y6 13 16 0
Q10 x3+y4+yz2+xy3 10 24 0
Q11 x3+y2z+xz3+z5 11 18 0
Q12 x3+y5+yz2+xy4 12 15 0
S11 x4+y2z+xz2+x3z 11 16 0
S12 x2y+y2z+xz3+z5 12 13 0
U12 x3+y3+z4+xyz2 12 12 0
W1,0 x4+x2y3+y6 15 12 0
Q2,0 x3+yz2+x2y2+xy4 14 12 0
S1,0 x2z+yz2+y5+zy3 14 10 0
U1,0 x3+xz2+xy3+y3z 14 9 0
E18 x3+y10+xy7 18 30 0
E19 x3+y11+xy7 19 21 0
E20 x3+y11+xy8 20 33 0
Z18 x3y+y9+xy6 18 17 0
Z19 x3y+y9+xy7 19 27 0
W17 x4+y7+xy5 17 20 0
W18 x4+y7+x2y4 18 28 0
Q16 x3+yz2+xy5+y7 16 21 0
Q17 x3+yz2+xy5+y8 17 30 0
Q18 x3+yz2+xy6+y8 18 48 0
S16 x2z+yz2+xy4+y6 16 17 0
U16 x3+xz2+y5+x2y2 16 15 0
0 0 0 0 0
0 x5+x4y2+y7 24 35 0
0 x6+x5y2+y8 35 24 0

Hertlings Conjecture

Sao Carlos, 08/02 http://www.singular.uni-kl.de