Build. Blocks
Comb. Appl.
HCA Proving
Arrangements
Branches
Classify
Coding
Deformations
Equidim Part
Existence
Finite Groups
Flatness
Genus
Hilbert Series
Membership
Nonnormal Locus
Normalization
Primdec
Puiseux
Plane Curves
Saturation
Solving
Space Curves
Spectrum
Spectral Pairs - Another Example
ring R=0,(x,y,z),ds;
poly f=x7+y7+z7+x2y2z2;
LIB "sing.lib";
milnor(f);
==>
167
LIB "gaussman.lib";
sppairs(f);
==>
[1]:
   _[1]=-1/2     _[2]=-5/14   _[3]=-3/14   _[4]=-3/14   _[5]=-1/14   _[6]=-1/14
   _[7]=0        _[8]=1/14    _[9]=1/14   _[10]=1/7    _[11]=3/14   _[12]=3/14
   _[13]=2/7    _[14]=5/14   _[15]=5/14   _[16]=3/7    _[17]=1/2    _[18]=4/7
   _[19]=9/14   _[20]=9/14   _[21]=5/7    _[22]=11/14  _[23]=11/14  _[24]=6/7
   _[25]=13/14  _[26]=13/14  _[27]=1      _[28]=15/14  _[29]=15/14  _[30]=17/14
   _[31]=17/14  _[32]=19/14  _[33]=3/2
[2]:
   4,3,3,2,3,2,3,3,2,2,3, 2,2,3, 2,2, 2,2, 2,1,2, 2,1,2,2,1,1,2,1,2,1,1,0
[3]:
   1,3,3,3,3,6,1,3,9,3,3,12,3,3,15,3,19,3,15,3,3,12,3,3,9,3,1,6,3,3,3,3,1
   ^                                  ^                                 ^
In particular, we find a 3 x 3 Jordan block of the monodromy (with eigenvalue -1, belonging to the pairs (-1/2,4), (3/2,0) and one of the pairs (1/2,2)), while the 18 other Jordan blocks with eigenvalue -1 are of size 1 (belonging to the 18 remaining pairs (1/2,2)).

Sao Carlos, 08/02 http://www.singular.uni-kl.de