My Project
Loading...
Searching...
No Matches
Functions
facHensel.h File Reference

This file defines functions for Hensel lifting. More...

#include "cf_assert.h"
#include "debug.h"
#include "timing.h"
#include "canonicalform.h"
#include "fac_util.h"

Go to the source code of this file.

Functions

void sortList (CFList &list, const Variable &x)
 sort a list of polynomials by their degree in x. More...
 
void henselLift12 (const CanonicalForm &F, CFList &factors, int l, CFArray &Pi, CFList &diophant, CFMatrix &M, modpk &b, bool sort=true)
 Hensel lift from univariate to bivariate. More...
 
void henselLift12 (const CanonicalForm &F, CFList &factors, int l, CFArray &Pi, CFList &diophant, CFMatrix &M, bool sort=true)
 Hensel lift from univariate to bivariate. More...
 
void henselLiftResume12 (const CanonicalForm &F, CFList &factors, int start, int end, CFArray &Pi, const CFList &diophant, CFMatrix &M, const modpk &b=modpk())
 resume Hensel lift from univariate to bivariate. Assumes factors are lifted to precision Variable (2)^start and lifts them to precision Variable (2)^end More...
 
CFList henselLift23 (const CFList &eval, const CFList &factors, int *l, CFList &diophant, CFArray &Pi, CFMatrix &M)
 Hensel lifting from bivariate to trivariate. More...
 
void henselLiftResume (const CanonicalForm &F, CFList &factors, int start, int end, CFArray &Pi, const CFList &diophant, CFMatrix &M, const CFList &MOD)
 resume Hensel lifting. More...
 
CFList henselLift (const CFList &F, const CFList &factors, const CFList &MOD, CFList &diophant, CFArray &Pi, CFMatrix &M, int lOld, int lNew)
 Hensel lifting. More...
 
CFList henselLift (const CFList &eval, const CFList &factors, int *l, int lLength, bool sort=true)
 Hensel lifting from bivariate to multivariate. More...
 
void nonMonicHenselLift12 (const CanonicalForm &F, CFList &factors, int l, CFArray &Pi, CFList &diophant, CFMatrix &M, const CFArray &LCs, bool sort)
 Hensel lifting from univariate to bivariate, factors need not to be monic. More...
 
CFList nonMonicHenselLift2 (const CFList &eval, const CFList &factors, int *l, int lLength, bool sort, const CFList &LCs1, const CFList &LCs2, const CFArray &Pi, const CFList &diophant, bool &noOneToOne)
 two factor Hensel lifting from bivariate to multivariate, factors need not to be monic More...
 
CFList nonMonicHenselLift (const CFList &eval, const CFList &factors, CFList *const &LCs, CFList &diophant, CFArray &Pi, int *liftBound, int length, bool &noOneToOne)
 Hensel lifting of non monic factors, needs correct leading coefficients of factors and a one to one corresponds between bivariate and multivariate factors to succeed. More...
 

Detailed Description

This file defines functions for Hensel lifting.

ABSTRACT: function are used for bi- and multivariate factorization over finite fields. Described in "Efficient Multivariate Factorization over Finite Fields" by L. Bernardin & M. Monagon and "Algorithms for Computer Algebra" by Geddes, Czapor, Labahn

Author
Martin Lee

Definition in file facHensel.h.

Function Documentation

◆ henselLift() [1/2]

CFList henselLift ( const CFList eval,
const CFList factors,
int *  l,
int  lLength,
bool  sort = true 
)

Hensel lifting from bivariate to multivariate.

Returns
henselLift returns a list of lifted factors
See also
henselLift12(), henselLiftResume12(), henselLift23(), henselLiftResume()
Parameters
[in]evala list of polynomials the last element is a compressed multivariate poly, last but one element equals the last elements modulo its main variable and so on. The first element is a compressed bivariate poly.
[in]factorsbivariate factors, including leading coefficient
[in]llifting bounds
[in]lLengthlength of l
[in]sortsort factors by degree in Variable(1)

Definition at line 1894 of file facHensel.cc.

1896{
1897 CFList diophant;
1898 CFList buf= factors;
1899 buf.insert (LC (eval.getFirst(), 1));
1900 if (sort)
1901 sortList (buf, Variable (1));
1902 CFArray Pi;
1903 CFMatrix M= CFMatrix (l[1], factors.length());
1904 CFList result= henselLift23 (eval, buf, l, diophant, Pi, M);
1905 if (eval.length() == 2)
1906 return result;
1907 CFList MOD;
1908 for (int i= 0; i < 2; i++)
1909 MOD.append (power (Variable (i + 2), l[i]));
1911 j++;
1912 CFList bufEval;
1913 bufEval.append (j.getItem());
1914 j++;
1915
1916 for (int i= 2; i < lLength && j.hasItem(); i++, j++)
1917 {
1918 result.insert (LC (bufEval.getFirst(), 1));
1919 bufEval.append (j.getItem());
1920 M= CFMatrix (l[i], factors.length());
1921 result= henselLift (bufEval, result, MOD, diophant, Pi, M, l[i - 1], l[i]);
1922 MOD.append (power (Variable (i + 2), l[i]));
1923 bufEval.removeFirst();
1924 }
1925 return result;
1926}
CanonicalForm power(const CanonicalForm &f, int n)
exponentiation
Matrix< CanonicalForm > CFMatrix
CanonicalForm LC(const CanonicalForm &f)
int l
Definition: cfEzgcd.cc:100
int i
Definition: cfEzgcd.cc:132
static void sort(int **points, int sizePoints)
T getFirst() const
Definition: ftmpl_list.cc:279
void removeFirst()
Definition: ftmpl_list.cc:287
int length() const
Definition: ftmpl_list.cc:273
void append(const T &)
Definition: ftmpl_list.cc:256
void insert(const T &)
Definition: ftmpl_list.cc:193
factory's class for variables
Definition: variable.h:33
CFList & eval
Definition: facFactorize.cc:47
int j
Definition: facHensel.cc:110
CFList henselLift23(const CFList &eval, const CFList &factors, int *l, CFList &diophant, CFArray &Pi, CFMatrix &M)
Hensel lifting from bivariate to trivariate.
Definition: facHensel.cc:1785
fq_nmod_t buf
Definition: facHensel.cc:101
const CanonicalForm & M
Definition: facHensel.cc:97
CFList henselLift(const CFList &F, const CFList &factors, const CFList &MOD, CFList &diophant, CFArray &Pi, CFMatrix &M, int lOld, int lNew)
Hensel lifting.
Definition: facHensel.cc:1852
CFList result
Definition: facHensel.cc:126
void sortList(CFList &list, const Variable &x)
sort a list of polynomials by their degree in x.
Definition: facHensel.cc:449

◆ henselLift() [2/2]

CFList henselLift ( const CFList F,
const CFList factors,
const CFList MOD,
CFList diophant,
CFArray Pi,
CFMatrix M,
int  lOld,
int  lNew 
)

Hensel lifting.

Returns
henselLift returns a list of polynomials lifted to precision F.getLast().mvar()^l_new
See also
henselLift12(), henselLiftResume12(), henselLift23(), henselLiftResume()
Parameters
[in]Ftwo compressed, multivariate polys F and G
[in]factorsmonic multivariate factors including leading coefficient as first element.
[in]MODa list of powers of Variables of level higher than 1
[in,out]diophantresult of multiRecDiophantine()
[in,out]Pistores intermediate results
[in,out]Mstores intermediate results
[in]lOldlifting precision of F.mvar()
[in]lNewlifting precision of G.mvar()

Definition at line 1852 of file facHensel.cc.

1854{
1855 diophant= multiRecDiophantine (F.getFirst(), factors, diophant, MOD, lOld);
1856 int k= 0;
1857 CFArray bufFactors= CFArray (factors.length());
1858 for (CFListIterator i= factors; i.hasItem(); i++, k++)
1859 {
1860 if (k == 0)
1861 bufFactors[k]= LC (F.getLast(), 1);
1862 else
1863 bufFactors[k]= i.getItem();
1864 }
1865 CFList buf= factors;
1866 buf.removeFirst();
1867 buf.insert (LC (F.getLast(), 1));
1869 i++;
1870 Variable y= F.getLast().mvar();
1871 Variable x= F.getFirst().mvar();
1872 CanonicalForm xToLOld= power (x, lOld);
1873 Pi [0]= mod (Pi[0], xToLOld);
1874 M (1, 1)= Pi [0];
1875 k= 1;
1876 if (i.hasItem())
1877 i++;
1878 for (; i.hasItem(); i++, k++)
1879 {
1880 Pi [k]= mod (Pi [k], xToLOld);
1881 M (1, k + 1)= Pi [k];
1882 }
1883
1884 for (int d= 1; d < lNew; d++)
1885 henselStep (F.getLast(), buf, bufFactors, diophant, M, Pi, d, MOD);
1886 CFList result;
1887 for (k= 1; k < factors.length(); k++)
1888 result.append (bufFactors[k]);
1889 return result;
1890}
Array< CanonicalForm > CFArray
int k
Definition: cfEzgcd.cc:99
factory's main class
Definition: canonicalform.h:86
Variable mvar() const
mvar() returns the main variable of CO or Variable() if CO is in a base domain.
T getLast() const
Definition: ftmpl_list.cc:309
const CanonicalForm int const CFList const Variable & y
Definition: facAbsFact.cc:53
Variable x
Definition: facHensel.cc:127
static int mod(const CFList &L, const CanonicalForm &p)
Definition: facHensel.cc:252
CFList multiRecDiophantine(const CanonicalForm &F, const CFList &factors, const CFList &recResult, const CFList &M, int d)
Definition: facHensel.cc:1470
static void henselStep(const CanonicalForm &F, const CFList &factors, CFArray &bufFactors, const CFList &diophant, CFMatrix &M, CFArray &Pi, int j, const CFList &MOD)
Definition: facHensel.cc:1559

◆ henselLift12() [1/2]

void henselLift12 ( const CanonicalForm F,
CFList factors,
int  l,
CFArray Pi,
CFList diophant,
CFMatrix M,
bool  sort = true 
)

Hensel lift from univariate to bivariate.

See also
henselLiftResume12(), henselLift23(), henselLiftResume(), henselLift()
Parameters
[in]Fcompressed, bivariate poly
[in,out]factorsmonic univariate factors of F, including leading coefficient as first element. Returns monic lifted factors without the leading coefficient
[in]llifting precision
[in,out]Pistores intermediate results
[in,out]diophantresult of diophantine()
[in,out]Mstores intermediate results
[in]sortsort factors by degree in Variable(1)

Definition at line 1334 of file facHensel.cc.

1336{
1337 modpk dummy= modpk();
1338 henselLift12 (F, factors, l, Pi, diophant, M, dummy, sort);
1339}
class to do operations mod p^k for int's p and k
Definition: fac_util.h:23
void henselLift12(const CanonicalForm &F, CFList &factors, int l, CFArray &Pi, CFList &diophant, CFMatrix &M, modpk &b, bool sort)
Hensel lift from univariate to bivariate.
Definition: facHensel.cc:1274

◆ henselLift12() [2/2]

void henselLift12 ( const CanonicalForm F,
CFList factors,
int  l,
CFArray Pi,
CFList diophant,
CFMatrix M,
modpk b,
bool  sort = true 
)

Hensel lift from univariate to bivariate.

See also
henselLiftResume12(), henselLift23(), henselLiftResume(), henselLift()
Parameters
[in]Fcompressed, bivariate poly
[in,out]factorsmonic univariate factors of F, including leading coefficient as first element. Returns monic lifted factors without the leading coefficient
[in]llifting precision
[in,out]Pistores intermediate results
[in,out]diophantresult of diophantine()
[in,out]Mstores intermediate results
[in]bcoeff bound
[in]sortsort factors by degree in Variable(1)

Definition at line 1274 of file facHensel.cc.

1276{
1277 if (sort)
1278 sortList (factors, Variable (1));
1279 Pi= CFArray (factors.length() - 1);
1280 CFListIterator j= factors;
1281 diophant= diophantine (F[0], F, factors, b);
1282 CanonicalForm bufF= F;
1283 if (getCharacteristic() == 0 && b.getp() != 0)
1284 {
1285 Variable v;
1286 bool hasAlgVar= hasFirstAlgVar (F, v);
1287 for (CFListIterator i= factors; i.hasItem() && !hasAlgVar; i++)
1288 hasAlgVar= hasFirstAlgVar (i.getItem(), v);
1289 Variable w;
1290 bool hasAlgVar2= false;
1291 for (CFListIterator i= diophant; i.hasItem() && !hasAlgVar2; i++)
1292 hasAlgVar2= hasFirstAlgVar (i.getItem(), w);
1293 if (hasAlgVar && hasAlgVar2 && v!=w)
1294 {
1295 bufF= replacevar (bufF, v, w);
1296 for (CFListIterator i= factors; i.hasItem(); i++)
1297 i.getItem()= replacevar (i.getItem(), v, w);
1298 }
1299 }
1300
1301 DEBOUTLN (cerr, "diophant= " << diophant);
1302 j++;
1303 Pi [0]= mulNTL (j.getItem(), mod (factors.getFirst(), F.mvar()), b);
1304 M (1, 1)= Pi [0];
1305 int i= 1;
1306 if (j.hasItem())
1307 j++;
1308 for (; j.hasItem(); j++, i++)
1309 {
1310 Pi [i]= mulNTL (Pi [i - 1], j.getItem(), b);
1311 M (1, i + 1)= Pi [i];
1312 }
1313 CFArray bufFactors= CFArray (factors.length());
1314 i= 0;
1315 for (CFListIterator k= factors; k.hasItem(); i++, k++)
1316 {
1317 if (i == 0)
1318 bufFactors[i]= mod (k.getItem(), F.mvar());
1319 else
1320 bufFactors[i]= k.getItem();
1321 }
1322 for (i= 1; i < l; i++)
1323 henselStep12 (bufF, factors, bufFactors, diophant, M, Pi, i, b);
1324
1325 CFListIterator k= factors;
1326 for (i= 0; i < factors.length (); i++, k++)
1327 k.getItem()= bufFactors[i];
1328 factors.removeFirst();
1329}
bool hasFirstAlgVar(const CanonicalForm &f, Variable &a)
check if poly f contains an algebraic variable a
Definition: cf_ops.cc:679
int FACTORY_PUBLIC getCharacteristic()
Definition: cf_char.cc:70
CanonicalForm b
Definition: cfModGcd.cc:4103
#define DEBOUTLN(stream, objects)
Definition: debug.h:49
const CanonicalForm & w
Definition: facAbsFact.cc:51
int hasAlgVar(const CanonicalForm &f, const Variable &v)
const Variable & v
< [in] a sqrfree bivariate poly
Definition: facBivar.h:39
CFList diophantine(const CanonicalForm &F, const CFList &factors)
Definition: facHensel.cc:1062
static CFList replacevar(const CFList &L, const Variable &a, const Variable &b)
Definition: facHensel.cc:289
void henselStep12(const CanonicalForm &F, const CFList &factors, CFArray &bufFactors, const CFList &diophant, CFMatrix &M, CFArray &Pi, int j, const modpk &b)
Definition: facHensel.cc:1070
CanonicalForm mulNTL(const CanonicalForm &F, const CanonicalForm &G, const modpk &b)
multiplication of univariate polys using FLINT/NTL over F_p, F_q, Z/p^k, Z/p^k[t]/(f),...
Definition: facMul.cc:411

◆ henselLift23()

CFList henselLift23 ( const CFList eval,
const CFList factors,
int *  l,
CFList diophant,
CFArray Pi,
CFMatrix M 
)

Hensel lifting from bivariate to trivariate.

Returns
henselLift23 returns a list of polynomials lifted to precision Variable (3)^l[1]
See also
henselLift12(), henselLiftResume12(), henselLiftResume(), henselLift()
Parameters
[in]evalcontains compressed, bivariate as first element and trivariate one as second element
[in]factorsmonic bivariate factors, including leading coefficient as first element.
[in]ll[0]: precision of bivariate lifting, l[1] as above
[in,out]diophantreturns the result of biDiophantine()
[in,out]Pistores intermediate results
[in,out]Mstores intermediate results

Definition at line 1785 of file facHensel.cc.

1787{
1788 CFList buf= factors;
1789 int k= 0;
1790 int liftBoundBivar= l[k];
1791 diophant= biDiophantine (eval.getFirst(), buf, liftBoundBivar);
1792 CFList MOD;
1793 MOD.append (power (Variable (2), liftBoundBivar));
1794 CFArray bufFactors= CFArray (factors.length());
1795 k= 0;
1797 j++;
1798 buf.removeFirst();
1799 buf.insert (LC (j.getItem(), 1));
1800 for (CFListIterator i= buf; i.hasItem(); i++, k++)
1801 bufFactors[k]= i.getItem();
1802 Pi= CFArray (factors.length() - 1);
1804 i++;
1805 Variable y= j.getItem().mvar();
1806 Pi [0]= mulMod (i.getItem(), mod (buf.getFirst(), y), MOD);
1807 M (1, 1)= Pi [0];
1808 k= 1;
1809 if (i.hasItem())
1810 i++;
1811 for (; i.hasItem(); i++, k++)
1812 {
1813 Pi [k]= mulMod (Pi [k - 1], i.getItem(), MOD);
1814 M (1, k + 1)= Pi [k];
1815 }
1816
1817 for (int d= 1; d < l[1]; d++)
1818 henselStep (j.getItem(), buf, bufFactors, diophant, M, Pi, d, MOD);
1819 CFList result;
1820 for (k= 1; k < factors.length(); k++)
1821 result.append (bufFactors[k]);
1822 return result;
1823}
CFList biDiophantine(const CanonicalForm &F, const CFList &factors, int d)
Definition: facHensel.cc:1369
CanonicalForm mulMod(const CanonicalForm &A, const CanonicalForm &B, const CFList &MOD)
Karatsuba style modular multiplication for multivariate polynomials.
Definition: facMul.cc:3080

◆ henselLiftResume()

void henselLiftResume ( const CanonicalForm F,
CFList factors,
int  start,
int  end,
CFArray Pi,
const CFList diophant,
CFMatrix M,
const CFList MOD 
)

resume Hensel lifting.

See also
henselLift12(), henselLiftResume12(), henselLift23(), henselLift()
Parameters
[in]Fcompressed, multivariate poly
[in,out]factorsmonic multivariate factors lifted to precision F.mvar()^start, including leading coefficient as first element. Returns factors lifted to precision F.mvar()^end
[in]startstarting precision
[in]endend precision
[in,out]Pistores intermediate results
[in]diophantresult of multiRecDiophantine()
[in,out]Mstores intermediate results
[in]MODa list of powers of Variables of level higher than 1

Definition at line 1827 of file facHensel.cc.

1830{
1831 CFArray bufFactors= CFArray (factors.length());
1832 int i= 0;
1833 CanonicalForm xToStart= power (F.mvar(), start);
1834 for (CFListIterator k= factors; k.hasItem(); k++, i++)
1835 {
1836 if (i == 0)
1837 bufFactors[i]= mod (k.getItem(), xToStart);
1838 else
1839 bufFactors[i]= k.getItem();
1840 }
1841 for (i= start; i < end; i++)
1842 henselStep (F, factors, bufFactors, diophant, M, Pi, i, MOD);
1843
1844 CFListIterator k= factors;
1845 for (i= 0; i < factors.length(); k++, i++)
1846 k.getItem()= bufFactors [i];
1847 factors.removeFirst();
1848 return;
1849}

◆ henselLiftResume12()

void henselLiftResume12 ( const CanonicalForm F,
CFList factors,
int  start,
int  end,
CFArray Pi,
const CFList diophant,
CFMatrix M,
const modpk b = modpk() 
)

resume Hensel lift from univariate to bivariate. Assumes factors are lifted to precision Variable (2)^start and lifts them to precision Variable (2)^end

See also
henselLift12(), henselLift23(), henselLiftResume(), henselLift()
Parameters
[in]Fcompressed, bivariate poly
[in,out]factorsmonic factors of F, lifted to precision start, including leading coefficient as first element. Returns monic lifted factors without the leading coefficient
[in]startstarting precision
[in]endend precision
[in,out]Pistores intermediate results
[in]diophantresult of diophantine
[in,out]Mstores intermediate results
[in]bcoeff bound

Definition at line 1343 of file facHensel.cc.

1346{
1347 CFArray bufFactors= CFArray (factors.length());
1348 int i= 0;
1349 CanonicalForm xToStart= power (F.mvar(), start);
1350 for (CFListIterator k= factors; k.hasItem(); k++, i++)
1351 {
1352 if (i == 0)
1353 bufFactors[i]= mod (k.getItem(), xToStart);
1354 else
1355 bufFactors[i]= k.getItem();
1356 }
1357 for (i= start; i < end; i++)
1358 henselStep12 (F, factors, bufFactors, diophant, M, Pi, i, b);
1359
1360 CFListIterator k= factors;
1361 for (i= 0; i < factors.length(); k++, i++)
1362 k.getItem()= bufFactors [i];
1363 factors.removeFirst();
1364 return;
1365}

◆ nonMonicHenselLift()

CFList nonMonicHenselLift ( const CFList eval,
const CFList factors,
CFList *const LCs,
CFList diophant,
CFArray Pi,
int *  liftBound,
int  length,
bool &  noOneToOne 
)

Hensel lifting of non monic factors, needs correct leading coefficients of factors and a one to one corresponds between bivariate and multivariate factors to succeed.

Returns
nonMonicHenselLift returns a list of lifted factors such that prod (factors) == eval.getLast() if there is a one to one correspondence
Parameters
[in]evala list of polys the last element is a compressed multivariate poly, last but one element equals the last elements modulo its main variable and so on. The first element is a compressed poly in 3 variables
[in]factorsa list of bivariate factors
[in]LCsleading coefficients, evaluated in the same way as eval
[in,out]diophantsolution of univariate diophantine equation
[in,out]Pibuffer intermediate results
[in]liftBoundlifting bounds
[in]lengthlength of lifting bounds
[in,out]noOneToOnecheck for one to one correspondence

Definition at line 2940 of file facHensel.cc.

2944{
2945 CFList bufDiophant= diophant;
2946 CFList buf= factors;
2947 CFArray bufPi= Pi;
2948 CFMatrix M= CFMatrix (liftBound[1], factors.length() - 1);
2949 int k= 0;
2950
2951 TIMING_START (hensel23);
2952 CFList result=
2953 nonMonicHenselLift23 (eval.getFirst(), factors, LCs [0], diophant, bufPi,
2954 liftBound[1], liftBound[0], noOneToOne);
2955 TIMING_END_AND_PRINT (hensel23, "time for 23: ");
2956
2957 if (noOneToOne)
2958 return CFList();
2959
2960 if (eval.length() == 1)
2961 return result;
2962
2963 k++;
2964 CFList MOD;
2965 for (int i= 0; i < 2; i++)
2966 MOD.append (power (Variable (i + 2), liftBound[i]));
2967
2969 CFList bufEval;
2970 bufEval.append (j.getItem());
2971 j++;
2972
2973 for (int i= 2; i <= length && j.hasItem(); i++, j++, k++)
2974 {
2975 bufEval.append (j.getItem());
2976 M= CFMatrix (liftBound[i], factors.length() - 1);
2977 TIMING_START (hensel);
2978 result= nonMonicHenselLift (bufEval, result, LCs [i-1], diophant, bufPi, M,
2979 liftBound[i-1], liftBound[i], MOD, noOneToOne);
2980 TIMING_END_AND_PRINT (hensel, "time for further hensel: ");
2981 if (noOneToOne)
2982 return result;
2983 MOD.append (power (Variable (i + 2), liftBound[i]));
2984 bufEval.removeFirst();
2985 }
2986
2987 return result;
2988}
List< CanonicalForm > CFList
CFList nonMonicHenselLift(const CFList &F, const CFList &factors, const CFList &LCs, CFList &diophant, CFArray &Pi, CFMatrix &M, int lOld, int &lNew, const CFList &MOD, bool &noOneToOne)
Definition: facHensel.cc:2855
CFList nonMonicHenselLift23(const CanonicalForm &F, const CFList &factors, const CFList &LCs, CFList &diophant, CFArray &Pi, int liftBound, int bivarLiftBound, bool &bad)
Definition: facHensel.cc:2751
static BOOLEAN length(leftv result, leftv arg)
Definition: interval.cc:257
#define TIMING_START(t)
Definition: timing.h:92
#define TIMING_END_AND_PRINT(t, msg)
Definition: timing.h:94

◆ nonMonicHenselLift12()

void nonMonicHenselLift12 ( const CanonicalForm F,
CFList factors,
int  l,
CFArray Pi,
CFList diophant,
CFMatrix M,
const CFArray LCs,
bool  sort 
)

Hensel lifting from univariate to bivariate, factors need not to be monic.

Parameters
[in]Fa bivariate poly
[in,out]factorsa list of univariate polys lifted factors
[in]llift bound
[in,out]Pistores intermediate results
[in,out]diophantresult of diophantine
[in,out]Mstores intermediate results
[in]LCsleading coefficients
[in]sortif true factors are sorted by their degree

Definition at line 2154 of file facHensel.cc.

2157{
2158 if (sort)
2159 sortList (factors, Variable (1));
2160 Pi= CFArray (factors.length() - 2);
2161 CFList bufFactors2= factors;
2162 bufFactors2.removeFirst();
2163 diophant= diophantine (F[0], bufFactors2);
2164 DEBOUTLN (cerr, "diophant= " << diophant);
2165
2166 CFArray bufFactors= CFArray (bufFactors2.length());
2167 int i= 0;
2168 for (CFListIterator k= bufFactors2; k.hasItem(); i++, k++)
2169 bufFactors[i]= replaceLc (k.getItem(), LCs [i]);
2170
2171 Variable x= F.mvar();
2172 if (degree (bufFactors[0], x) > 0 && degree (bufFactors [1], x) > 0)
2173 {
2174 M (1, 1)= mulNTL (bufFactors [0] [0], bufFactors[1] [0]);
2175 Pi [0]= M (1, 1) + (mulNTL (bufFactors [0] [1], bufFactors[1] [0]) +
2176 mulNTL (bufFactors [0] [0], bufFactors [1] [1]))*x;
2177 }
2178 else if (degree (bufFactors[0], x) > 0)
2179 {
2180 M (1, 1)= mulNTL (bufFactors [0] [0], bufFactors[1]);
2181 Pi [0]= M (1, 1) +
2182 mulNTL (bufFactors [0] [1], bufFactors[1])*x;
2183 }
2184 else if (degree (bufFactors[1], x) > 0)
2185 {
2186 M (1, 1)= mulNTL (bufFactors [0], bufFactors[1] [0]);
2187 Pi [0]= M (1, 1) +
2188 mulNTL (bufFactors [0], bufFactors[1] [1])*x;
2189 }
2190 else
2191 {
2192 M (1, 1)= mulNTL (bufFactors [0], bufFactors[1]);
2193 Pi [0]= M (1, 1);
2194 }
2195
2196 for (i= 1; i < Pi.size(); i++)
2197 {
2198 if (degree (Pi[i-1], x) > 0 && degree (bufFactors [i+1], x) > 0)
2199 {
2200 M (1,i+1)= mulNTL (Pi[i-1] [0], bufFactors[i+1] [0]);
2201 Pi [i]= M (1,i+1) + (mulNTL (Pi[i-1] [1], bufFactors[i+1] [0]) +
2202 mulNTL (Pi[i-1] [0], bufFactors [i+1] [1]))*x;
2203 }
2204 else if (degree (Pi[i-1], x) > 0)
2205 {
2206 M (1,i+1)= mulNTL (Pi[i-1] [0], bufFactors [i+1]);
2207 Pi [i]= M(1,i+1) + mulNTL (Pi[i-1] [1], bufFactors[i+1])*x;
2208 }
2209 else if (degree (bufFactors[i+1], x) > 0)
2210 {
2211 M (1,i+1)= mulNTL (Pi[i-1], bufFactors [i+1] [0]);
2212 Pi [i]= M (1,i+1) + mulNTL (Pi[i-1], bufFactors[i+1] [1])*x;
2213 }
2214 else
2215 {
2216 M (1,i+1)= mulNTL (Pi [i-1], bufFactors [i+1]);
2217 Pi [i]= M (1,i+1);
2218 }
2219 }
2220
2221 for (i= 1; i < l; i++)
2222 nonMonicHenselStep12 (F, bufFactors2, bufFactors, diophant, M, Pi, i, LCs);
2223
2224 factors= CFList();
2225 for (i= 0; i < bufFactors.size(); i++)
2226 factors.append (bufFactors[i]);
2227 return;
2228}
int degree(const CanonicalForm &f)
int size() const
Definition: ftmpl_array.cc:92
void nonMonicHenselStep12(const CanonicalForm &F, const CFList &factors, CFArray &bufFactors, const CFList &diophant, CFMatrix &M, CFArray &Pi, int j, const CFArray &)
Definition: facHensel.cc:1932
CanonicalForm replaceLc(const CanonicalForm &f, const CanonicalForm &c)
Definition: fac_util.cc:90

◆ nonMonicHenselLift2()

CFList nonMonicHenselLift2 ( const CFList eval,
const CFList factors,
int *  l,
int  lLength,
bool  sort,
const CFList LCs1,
const CFList LCs2,
const CFArray Pi,
const CFList diophant,
bool &  noOneToOne 
)

two factor Hensel lifting from bivariate to multivariate, factors need not to be monic

Returns
henselLift122 returns a list of lifted factors
Parameters
[in]evala list of polynomials the last element is a compressed multivariate poly, last but one element equals the last elements modulo its main variable and so on. The first element is a compressed bivariate poly.
[in]factorsbivariate factors
[in]llift bounds
[in]lLengthlength of l
[in]sortif true factors are sorted by their degree in Variable(1)
[in]LCs1a list of evaluated LC of first factor
[in]LCs2a list of evaluated LC of second factor
[in]Piintermediate result
[in]diophantresult of diophantine
[in,out]noOneToOnecheck for one to one correspondence

Definition at line 2697 of file facHensel.cc.

2700{
2701 CFList bufDiophant= diophant;
2702 CFList buf= factors;
2703 if (sort)
2704 sortList (buf, Variable (1));
2705 CFArray bufPi= Pi;
2706 CFMatrix M= CFMatrix (l[1], factors.length());
2707 CFList result=
2708 nonMonicHenselLift232(eval, buf, l, bufDiophant, bufPi, M, LCs1, LCs2, bad);
2709 if (bad)
2710 return CFList();
2711
2712 if (eval.length() == 2)
2713 return result;
2714 CFList MOD;
2715 for (int i= 0; i < 2; i++)
2716 MOD.append (power (Variable (i + 2), l[i]));
2718 j++;
2719 CFList bufEval;
2720 bufEval.append (j.getItem());
2721 j++;
2722 CFListIterator jj= LCs1;
2723 CFListIterator jjj= LCs2;
2724 CFList bufLCs1, bufLCs2;
2725 jj++, jjj++;
2726 bufLCs1.append (jj.getItem());
2727 bufLCs2.append (jjj.getItem());
2728 jj++, jjj++;
2729
2730 for (int i= 2; i < lLength && j.hasItem(); i++, j++, jj++, jjj++)
2731 {
2732 bufEval.append (j.getItem());
2733 bufLCs1.append (jj.getItem());
2734 bufLCs2.append (jjj.getItem());
2735 M= CFMatrix (l[i], factors.length());
2736 result= nonMonicHenselLift2 (bufEval, result, MOD, bufDiophant, bufPi, M,
2737 l[i - 1], l[i], bufLCs1, bufLCs2, bad);
2738 if (bad)
2739 return CFList();
2740 MOD.append (power (Variable (i + 2), l[i]));
2741 bufEval.removeFirst();
2742 bufLCs1.removeFirst();
2743 bufLCs2.removeFirst();
2744 }
2745 return result;
2746}
T & getItem() const
Definition: ftmpl_list.cc:431
bool bad
Definition: facFactorize.cc:64
CFList nonMonicHenselLift2(const CFList &F, const CFList &factors, const CFList &MOD, CFList &diophant, CFArray &Pi, CFMatrix &M, int lOld, int &lNew, const CFList &LCs1, const CFList &LCs2, bool &bad)
Definition: facHensel.cc:2632
CFList nonMonicHenselLift232(const CFList &eval, const CFList &factors, int *l, CFList &diophant, CFArray &Pi, CFMatrix &M, const CFList &LCs1, const CFList &LCs2, bool &bad)
Definition: facHensel.cc:2568

◆ sortList()

void sortList ( CFList list,
const Variable x 
)

sort a list of polynomials by their degree in x.

Parameters
[in,out]listlist of polys, sorted list
[in]xsome Variable

Definition at line 449 of file facHensel.cc.

450{
451 int l= 1;
452 int k= 1;
455 for (CFListIterator i= list; l <= list.length(); i++, l++)
456 {
457 for (CFListIterator j= list; k <= list.length() - l; k++)
458 {
459 m= j;
460 m++;
461 if (degree (j.getItem(), x) > degree (m.getItem(), x))
462 {
463 buf= m.getItem();
464 m.getItem()= j.getItem();
465 j.getItem()= buf;
466 j++;
467 j.getItem()= m.getItem();
468 }
469 else
470 j++;
471 }
472 k= 1;
473 }
474}
int m
Definition: cfEzgcd.cc:128