241{
242
245 {
246
248 }
249 else
250 {
253 if (reallen<=0) reallen=
currRing->N;
257
259 {
261 {
263 {
266 while ((
j>0) && (r[0]->
m[
j]==
NULL))
j--;
269 {
272 }
273 }
274 else
275 {
279 {
282 }
283 else
284 {
286 }
288 }
290 if ((weights!=
NULL) && (weights[
i]!=
NULL))
291 {
293 (*w) += add_row_shift;
296 }
297 }
298 #ifdef TEST
299 else
300 {
301
302 WarnS(
"internal NULL in resolvente");
304 }
305 #endif
307 }
311 {
315 }
317 {
319 ideal I=(ideal)L->
m[
i-1].
data;
320 ideal J;
323 {
325 }
326 else
327 {
329 }
332 }
333
334 }
335 return L;
336}
void atSet(idhdl root, char *name, void *data, int typ)
static int si_max(const int a, const int b)
INLINE_THIS void Init(int l=0)
#define idDelete(H)
delete an ideal
ideal idFreeModule(int i)
static BOOLEAN length(leftv result, leftv arg)
void pEnlargeSet(poly **p, int l, int increment)
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
ideal idInit(int idsize, int rank)
initialise an ideal / module
ideal id_FreeModule(int i, const ring r)
the free module of rank i
long id_RankFreeModule(ideal s, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s
void idSkipZeroes(ideal ide)
gives an ideal/module the minimal possible size