241{
  242  
  245  {
  246    
  248  }
  249  else
  250  {
  253    if (reallen<=0) reallen=
currRing->N;
 
  257 
  259    {
  261      {
  263        {
  266          while ((
j>0) && (r[0]->
m[
j]==
NULL)) 
j--;
 
  269          {
  272          }
  273        }
  274        else
  275        {
  279          {
  282          }
  283          else
  284          {
  286          }
  288        }
  290        if ((weights!=
NULL) && (weights[
i]!=
NULL))
 
  291        {
  293          (*w) += add_row_shift;
  296        }
  297      }
  298      #ifdef TEST
  299      else
  300      {
  301        
  302        WarnS(
"internal NULL in resolvente");
 
  304      }
  305      #endif
  307    }
  311    {
  315    }
  317    {
  319      ideal I=(ideal)L->
m[
i-1].
data;
 
  320      ideal J;
  323      {
  325      }
  326      else
  327      {
  329      }
  332    }
  333    
  334  }
  335  return L;
  336}
void atSet(idhdl root, char *name, void *data, int typ)
 
static int si_max(const int a, const int b)
 
INLINE_THIS void Init(int l=0)
 
#define idDelete(H)
delete an ideal
 
ideal idFreeModule(int i)
 
static BOOLEAN length(leftv result, leftv arg)
 
void pEnlargeSet(poly **p, int l, int increment)
 
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
 
ideal idInit(int idsize, int rank)
initialise an ideal / module
 
ideal id_FreeModule(int i, const ring r)
the free module of rank i
 
long id_RankFreeModule(ideal s, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s
 
void idSkipZeroes(ideal ide)
gives an ideal/module the minimal possible size