![]()  | 
  
    My Project
    
   | 
 
#include "polys/monomials/ring.h"#include "polys/monomials/p_polys.h"#include "polys/simpleideals.h"#include "kernel/structs.h"Go to the source code of this file.
Macros | |
| #define | idDelete(H) id_Delete((H),currRing) | 
| delete an ideal  More... | |
| #define | idMaxIdeal(D) id_MaxIdeal(D,currRing) | 
| initialise the maximal ideal (at 0)  More... | |
| #define | idPosConstant(I) id_PosConstant(I,currRing) | 
| index of generator with leading term in ground ring (if any); otherwise -1  More... | |
| #define | idIsConstant(I) id_IsConstant(I,currRing) | 
| #define | idSimpleAdd(A, B) id_SimpleAdd(A,B,currRing) | 
| #define | idPrint(id) id_Print(id, currRing, currRing) | 
| #define | idTest(id) id_Test(id, currRing) | 
Typedefs | |
| typedef ideal * | resolvente | 
Enumerations | |
| enum | GbVariant {  GbDefault =0 , GbStd , GbSlimgb , GbSba , GbGroebner , GbModstd , GbFfmod , GbNfmod , GbStdSat , GbSingmatic }  | 
Functions | |
| static ideal | idCopyFirstK (const ideal ide, const int k) | 
| void | idKeepFirstK (ideal ide, const int k) | 
| keeps the first k (>= 1) entries of the given ideal (Note that the kept polynomials may be zero.)  More... | |
| void | idDelEquals (ideal id) | 
| ideal | id_Copy (ideal h1, const ring r) | 
| copy an ideal  More... | |
| ideal | idCopy (ideal A) | 
| ideal | idAdd (ideal h1, ideal h2) | 
| h1 + h2  More... | |
| BOOLEAN | idInsertPoly (ideal h1, poly h2) | 
| insert h2 into h1 (if h2 is not the zero polynomial) return TRUE iff h2 was indeed inserted  More... | |
| BOOLEAN | idInsertPolyOnPos (ideal I, poly p, int pos) | 
| insert p into I on position pos  More... | |
| BOOLEAN | idInsertPolyWithTests (ideal h1, const int validEntries, const poly h2, const bool zeroOk, const bool duplicateOk) | 
| static ideal | idMult (ideal h1, ideal h2) | 
| hh := h1 * h2  More... | |
| BOOLEAN | idIs0 (ideal h) | 
| returns true if h is the zero ideal  More... | |
| static BOOLEAN | idHomIdeal (ideal id, ideal Q=NULL) | 
| static BOOLEAN | idHomModule (ideal m, ideal Q, intvec **w) | 
| BOOLEAN | idTestHomModule (ideal m, ideal Q, intvec *w) | 
| ideal | idMinBase (ideal h1) | 
| void | idInitChoise (int r, int beg, int end, BOOLEAN *endch, int *choise) | 
| void | idGetNextChoise (int r, int end, BOOLEAN *endch, int *choise) | 
| int | idGetNumberOfChoise (int t, int d, int begin, int end, int *choise) | 
| int | binom (int n, int r) | 
| ideal | idFreeModule (int i) | 
| ideal | idSect (ideal h1, ideal h2, GbVariant a=GbDefault) | 
| ideal | idMultSect (resolvente arg, int length, GbVariant a=GbDefault) | 
| ideal | idSyzygies (ideal h1, tHomog h, intvec **w, BOOLEAN setSyzComp=TRUE, BOOLEAN setRegularity=FALSE, int *deg=NULL, GbVariant a=GbDefault) | 
| ideal | idLiftStd (ideal h1, matrix *m, tHomog h=testHomog, ideal *syz=NULL, GbVariant a=GbDefault, ideal h11=NULL) | 
| ideal | idLift (ideal mod, ideal submod, ideal *rest=NULL, BOOLEAN goodShape=FALSE, BOOLEAN isSB=TRUE, BOOLEAN divide=FALSE, matrix *unit=NULL, GbVariant a=GbDefault) | 
| represents the generators of submod in terms of the generators of mod (Matrix(SM)*U-Matrix(rest)) = Matrix(M)*Matrix(result) goodShape: maximal non-zero index in generators of SM <= that of M isSB: generators of M form a Groebner basis divide: allow SM not to be a submodule of M U is an diagonal matrix of units (non-constant only in local rings) rest is: 0 if SM in M, SM if not divide, NF(SM,std(M)) if divide  More... | |
| void | idLiftW (ideal P, ideal Q, int n, matrix &T, ideal &R, int *w=NULL) | 
| ideal | idQuot (ideal h1, ideal h2, BOOLEAN h1IsStb=FALSE, BOOLEAN resultIsIdeal=FALSE) | 
| ideal | idElimination (ideal h1, poly delVar, intvec *hilb=NULL, GbVariant a=GbDefault) | 
| ideal | idMinors (matrix a, int ar, ideal R=NULL) | 
| compute all ar-minors of the matrix a the caller of mpRecMin the elements of the result are not in R (if R!=NULL)  More... | |
| ideal | idMinEmbedding (ideal arg, BOOLEAN inPlace=FALSE, intvec **w=NULL) | 
| ideal | idHead (ideal h) | 
| BOOLEAN | idIsSubModule (ideal id1, ideal id2) | 
| static ideal | idVec2Ideal (poly vec) | 
| ideal | idSeries (int n, ideal M, matrix U=NULL, intvec *w=NULL) | 
| static BOOLEAN | idIsZeroDim (ideal i) | 
| matrix | idDiff (matrix i, int k) | 
| matrix | idDiffOp (ideal I, ideal J, BOOLEAN multiply=TRUE) | 
| static intvec * | idSort (ideal id, BOOLEAN nolex=TRUE) | 
| ideal | idModulo (ideal h1, ideal h2, tHomog h=testHomog, intvec **w=NULL, matrix *T=NULL, GbVariant a=GbDefault) | 
| matrix | idCoeffOfKBase (ideal arg, ideal kbase, poly how) | 
| poly | id_GCD (poly f, poly g, const ring r) | 
| ideal | id_Farey (ideal x, number N, const ring r) | 
| ideal | id_TensorModuleMult (const int m, const ideal M, const ring rRing) | 
| ideal | id_Satstd (const ideal I, ideal J, const ring r) | 
| GbVariant | syGetAlgorithm (char *n, const ring r, const ideal M) | 
| #define idIsConstant | ( | I | ) | id_IsConstant(I,currRing) | 
| #define idMaxIdeal | ( | D | ) | id_MaxIdeal(D,currRing) | 
| #define idPosConstant | ( | I | ) | id_PosConstant(I,currRing) | 
| typedef ideal* resolvente | 
| enum GbVariant | 
| Enumerator | |
|---|---|
| GbDefault | |
| GbStd | |
| GbSlimgb | |
| GbSba | |
| GbGroebner | |
| GbModstd | |
| GbFfmod | |
| GbNfmod | |
| GbStdSat | |
| GbSingmatic | |
Definition at line 118 of file ideals.h.
| int binom | ( | int | n, | 
| int | r | ||
| ) | 
Definition at line 1106 of file simpleideals.cc.
| ideal id_Copy | ( | ideal | h1, | 
| const ring | r | ||
| ) | 
copy an ideal
Definition at line 499 of file simpleideals.cc.
| ideal id_Farey | ( | ideal | x, | 
| number | N, | ||
| const ring | r | ||
| ) | 
| poly id_GCD | ( | poly | f, | 
| poly | g, | ||
| const ring | r | ||
| ) | 
Definition at line 2745 of file ideals.cc.
Definition at line 3108 of file ideals.cc.
Definition at line 1992 of file simpleideals.cc.
      
  | 
  inline | 
| matrix idCoeffOfKBase | ( | ideal | arg, | 
| ideal | kbase, | ||
| poly | how | ||
| ) | 
Definition at line 2621 of file ideals.cc.
Definition at line 20 of file ideals.h.
| void idDelEquals | ( | ideal | id | ) | 
Definition at line 2956 of file ideals.cc.
Definition at line 1593 of file ideals.cc.
      
  | 
  inline | 
Definition at line 111 of file ideals.h.
| void idGetNextChoise | ( | int | r, | 
| int | end, | ||
| BOOLEAN * | endch, | ||
| int * | choise | ||
| ) | 
Definition at line 1048 of file simpleideals.cc.
| int idGetNumberOfChoise | ( | int | t, | 
| int | d, | ||
| int | begin, | ||
| int | end, | ||
| int * | choise | ||
| ) | 
Definition at line 1074 of file simpleideals.cc.
| ideal idHead | ( | ideal | h | ) | 
Definition at line 96 of file ideals.h.
| void idInitChoise | ( | int | r, | 
| int | beg, | ||
| int | end, | ||
| BOOLEAN * | endch, | ||
| int * | choise | ||
| ) | 
Definition at line 1026 of file simpleideals.cc.
| BOOLEAN idInsertPoly | ( | ideal | h1, | 
| poly | h2 | ||
| ) | 
insert h2 into h1 (if h2 is not the zero polynomial) return TRUE iff h2 was indeed inserted
Definition at line 789 of file simpleideals.cc.
| BOOLEAN idInsertPolyOnPos | ( | ideal | I, | 
| poly | p, | ||
| int | pos | ||
| ) | 
insert p into I on position pos
Definition at line 808 of file simpleideals.cc.
      
  | 
  inline | 
Definition at line 75 of file ideals.h.
| BOOLEAN idIs0 | ( | ideal | h | ) | 
| BOOLEAN idIsSubModule | ( | ideal | id1, | 
| ideal | id2 | ||
| ) | 
      
  | 
  inlinestatic | 
| void idKeepFirstK | ( | ideal | ide, | 
| const int | k | ||
| ) | 
keeps the first k (>= 1) entries of the given ideal (Note that the kept polynomials may be zero.)
| ideal idLift | ( | ideal | mod, | 
| ideal | submod, | ||
| ideal * | rest = NULL,  | 
        ||
| BOOLEAN | goodShape = FALSE,  | 
        ||
| BOOLEAN | isSB = TRUE,  | 
        ||
| BOOLEAN | divide = FALSE,  | 
        ||
| matrix * | unit = NULL,  | 
        ||
| GbVariant | a = GbDefault  | 
        ||
| ) | 
represents the generators of submod in terms of the generators of mod (Matrix(SM)*U-Matrix(rest)) = Matrix(M)*Matrix(result) goodShape: maximal non-zero index in generators of SM <= that of M isSB: generators of M form a Groebner basis divide: allow SM not to be a submodule of M U is an diagonal matrix of units (non-constant only in local rings) rest is: 0 if SM in M, SM if not divide, NF(SM,std(M)) if divide
Definition at line 1105 of file ideals.cc.
| ideal idLiftStd | ( | ideal | h1, | 
| matrix * | m, | ||
| tHomog | h = testHomog,  | 
        ||
| ideal * | syz = NULL,  | 
        ||
| GbVariant | a = GbDefault,  | 
        ||
| ideal | h11 = NULL  | 
        ||
| ) | 
Definition at line 976 of file ideals.cc.
Definition at line 1324 of file ideals.cc.
| ideal idMinBase | ( | ideal | h1 | ) | 
Definition at line 51 of file ideals.cc.
Definition at line 2687 of file ideals.cc.
compute all ar-minors of the matrix a the caller of mpRecMin the elements of the result are not in R (if R!=NULL)
Definition at line 1980 of file ideals.cc.
| ideal idModulo | ( | ideal | h1, | 
| ideal | h2, | ||
| tHomog | h = testHomog,  | 
        ||
| intvec ** | w = NULL,  | 
        ||
| matrix * | T = NULL,  | 
        ||
| GbVariant | a = GbDefault  | 
        ||
| ) | 
Definition at line 2414 of file ideals.cc.
      
  | 
  inlinestatic | 
| ideal idMultSect | ( | resolvente | arg, | 
| int | length, | ||
| GbVariant | a = GbDefault  | 
        ||
| ) | 
Definition at line 472 of file ideals.cc.
Definition at line 1494 of file ideals.cc.
Definition at line 316 of file ideals.cc.
| ideal idSyzygies | ( | ideal | h1, | 
| tHomog | h, | ||
| intvec ** | w, | ||
| BOOLEAN | setSyzComp = TRUE,  | 
        ||
| BOOLEAN | setRegularity = FALSE,  | 
        ||
| int * | deg = NULL,  | 
        ||
| GbVariant | a = GbDefault  | 
        ||
| ) | 
Definition at line 830 of file ideals.cc.
Definition at line 2069 of file ideals.cc.
      
  | 
  inlinestatic | 
Definition at line 3154 of file ideals.cc.