60 WarnS(
"minbase applies only to the local or homogeneous case over coefficient fields");
69 WarnS(
"minbase applies only to the local or homogeneous case over coefficient fields");
93 while ((
k > 0) && (h3->m[
k-1] ==
NULL))
k--;
96 while ((
l > 0) && (h2->m[
l-1] ==
NULL))
l--;
97 for (
i=
l-1;
i>=0;
i--)
102 while ((ll <
k) && ((h3->m[ll] ==
NULL)
154 for (
j=0;
j<r->N-1;
j++) names[
j]=r->names[
j];
239 Werror(
"error %d in >>groebner<<",err);
247 void *args[]={temp,(
void*)1,
NULL};
250 temp1=(ideal)temp0->
data;
254 Werror(
"error %d in >>modStd<<",err);
297 void *args[]={temp,
v,
NULL};
300 temp1=(ideal)temp0->
data;
305 Werror(
"error %d in >>satstd<<",err);
322 int rank=
si_max(h1->rank,h2->rank);
329 ideal first,second,temp,temp1,
result;
341 int t=flength; flength=slength; slength=t;
361 while ((
j>0) && (first->m[
j-1]==
NULL))
j--;
366 if (first->m[
i]!=
NULL)
368 if (syz_ring==orig_ring)
369 temp->m[
k] =
pCopy(first->m[
i]);
371 temp->m[
k] =
prCopyR(first->m[
i], orig_ring, syz_ring);
384 if (second->m[
i]!=
NULL)
386 if (syz_ring==orig_ring)
387 temp->m[
k] =
pCopy(second->m[
i]);
402 WarnS(
"wrong algorithm for GB");
407 if(syz_ring!=orig_ring)
414 if ((temp1->m[
i]!=
NULL)
417 if(syz_ring==orig_ring)
423 p =
prMoveR(temp1->m[
i], syz_ring,orig_ring);
440 if(syz_ring!=orig_ring)
474 int i,
j=0,
k=0,
l,maxrk=-1,realrki;
476 ideal bigmat,tempstd,
result;
488 if (realrki>maxrk) maxrk = realrki;
514 for (
i=0;
i<maxrk;
i++)
521 bigmat->m[
i] =
pAdd(bigmat->m[
i],
p);
535 if (syz_ring==orig_ring)
553 WarnS(
"wrong algorithm for GB");
558 if(syz_ring!=orig_ring)
568 if (syz_ring==orig_ring)
578 if(syz_ring!=orig_ring)
581 if(syz_ring!=orig_ring)
631 Warn(
"syzcomp too low, should be %d instead of %d",
k,syzcomp);
635 h2->rank = syzcomp+
i;
687 PrintS(
" --------------before std------------------------\n");
699 WarnS(
"wrong algorithm for GB");
710 int h1_size,
BOOLEAN inputIsIdeal,
const ring oring,
const ring sring)
720 Print(
"after std: --------------syzComp=%d------------------------\n",syzComp);
729 if (s_h3->m[
j] !=
NULL)
755 (*S)->m[
j]=s_h3->m[
j];
767 PrintS(
"T: ----------------------------------------\n");
786 if (s_h2->m[
j] !=
NULL)
788 poly q =
prMoveR( s_h2->m[
j], sring,oring);
836 int ii, idElemens_h1;
842 for(ii=0;ii<idElemens_h1 ;ii++)
pTest(h1->m[ii]);
857 if (orig_ring != syz_ring)
877 if (orig_ring != syz_ring)
882 if (s_h3->m[
j] !=
NULL)
910 if (s_h3->m[
j] !=
NULL)
914 e->m[
j] = s_h3->m[
j];
915 isMonomial=isMonomial && (
pNext(s_h3->m[
j])==
NULL);
934 assume(orig_ring==syz_ring);
936 if (dp_C_ring != syz_ring)
951 if (dp_C_ring != orig_ring)
993 return idInit(1,h1->rank);
1010 if (orig_ring != syz_ring)
1025 if (syz_ring!=orig_ring)
1035 if (syz_ring!=orig_ring)
rDelete(syz_ring);
1036 s_h3->rank=h1->rank;
1056 if (s_temp->m[
j]!=
NULL)
1069 s_temp->m[
j] =
pAdd(
p, q);
1086 *unit=
mpNew(e_mod,e_mod);
1088 for(
int i=e_mod;
i>0;
i--)
1111 int idelems_submod=
IDELEMS(submod);
1121 return idInit(1,idelems_mod);
1129 return idInit(1,idelems_mod);
1133 WerrorS(
"2nd module does not lie in the first");
1139 comps_to_add = idelems_submod;
1140 while ((comps_to_add>0) && (submod->m[comps_to_add-1]==
NULL))
1144 if ((
k!=0) && (lsmod==0)) lsmod=1;
1146 if (k<submod->rank) {
WarnS(
"rk(submod) > rk(mod) ?");
k=submod->rank; }
1153 ideal s_mod, s_temp;
1154 if (orig_ring != syz_ring)
1189 for(
j = 0;
j<comps_to_add;
j++)
1202 s_temp->rank += (
k+comps_to_add);
1205 s_result->rank = s_h3->rank;
1212 if (s_result->m[
j]!=
NULL)
1222 WarnS(
"first module not a standardbasis\n"
1223 "// ** or second not a proper submodule");
1226 WerrorS(
"2nd module does not lie in the first");
1230 if(syz_ring!=orig_ring)
1241 s_result=
idInit(idelems_submod,idelems_mod);
1246 p = s_rest->m[
j] = s_result->m[
j];
1253 pNeg(s_result->m[
j]);
1256 if ((lsmod==0) && (s_rest!=
NULL))
1260 if (s_rest->m[
j-1]!=
NULL)
1266 if(syz_ring!=orig_ring)
1276 s_rest->rank=
mod->rank;
1283 *unit=
mpNew(idelems_submod,idelems_submod);
1287 poly
p=s_result->m[
i];
1305 else p=s_result->m[
i];
1316 s_result->rank=idelems_mod;
1396 int i,
l,ll,
k,kkk,kmax;
1404 if ((k2==0) && (
k>1)) *addOnlyOne =
FALSE;
1411 if (weights!=
NULL)
delete weights;
1416 if (h2->m[
i] !=
NULL)
1427 *kkmax = kmax =
j*
k+1;
1442 if (h4->m[
i-1]!=
NULL)
1456 if(temph1->m[
l]!=
NULL)
1458 for (ll=0; ll<
j; ll++)
1482 h4->m[
i] = h4->m[
i+1];
1522 if (orig_ring!=syz_ring)
1524 s_h4 =
idrMoveR(s_h4,orig_ring, syz_ring);
1553 m=idModule2Matrix(
idCopy(s_h3));
1554 Print(
"result, kmax=%d:\n",kmax);
1560 if (weights1!=
NULL)
delete weights1;
1578 s_h3->rank = h1->rank;
1579 if(syz_ring!=orig_ring)
1598 int *block0,*block1;
1612 WerrorS(
"cannot eliminate in a qring");
1625 WerrorS(
"no elimination is possible: subalgebra is not admissible");
1638 for (
k=0;
k<ordersize-1;
k++)
1640 block0[
k+1] = origR->block0[
k];
1641 block1[
k+1] = origR->block1[
k];
1642 ord[
k+1] = origR->order[
k];
1643 if (origR->wvhdl[
k]!=
NULL) wv[
k+1] = (
int*)
omMemDup(origR->wvhdl[
k]);
1653 double wNsqr = (double)2.0 / (
double)(
currRing->N);
1657 wCall(h1->m, sl,
x, wNsqr);
1658 for (sl = (
currRing->N); sl!=0; sl--)
1659 wv[1][sl-1] =
x[sl + (
currRing->N) + 1];
1675 block0=(
int*)
omAlloc0(4*
sizeof(
int));
1676 block1=(
int*)
omAlloc0(4*
sizeof(
int));
1677 wv=(
int**)
omAlloc0(4*
sizeof(
int**));
1678 block0[0] = block0[1] = 1;
1679 block1[0] = block1[1] =
rVar(origR);
1702 block0=(
int*)
omAlloc0(4*
sizeof(
int));
1703 block1=(
int*)
omAlloc0(4*
sizeof(
int));
1704 wv=(
int**)
omAlloc0(4*
sizeof(
int**));
1705 block0[0] = block0[1] = 1;
1706 block1[0] = block1[1] =
rVar(origR);
1724 block0=(
int*)
omAlloc0(ordersize*
sizeof(
int));
1725 block1=(
int*)
omAlloc0(ordersize*
sizeof(
int));
1726 wv=(
int**)
omAlloc0(ordersize*
sizeof(
int**));
1727 for (
k=0;
k<ordersize-1;
k++)
1729 block0[
k+1] = origR->block0[
k];
1730 block1[
k+1] = origR->block1[
k];
1731 ord[
k+1] = origR->order[
k];
1732 if (origR->wvhdl[
k]!=
NULL)
1737 int l=(origR->block1[
k]-origR->block0[
k]+1)*
sizeof(
int);
1740 memcpy(wv[
k+1],origR->wvhdl[
k],
l);
1745 block1[0] =
rVar(origR);
1758 tmpR->block0 = block0;
1759 tmpR->block1 = block1;
1769 WerrorS(
"no elimination is possible: ordering condition is violated");
1786 if (origR->qideal!=
NULL)
1788 WarnS(
"eliminate in q-ring: experimental");
1803 WarnS(
"wrong algorithm for GB");
1814 while ((
i >= 0) && (hh->m[
i] ==
NULL))
i--;
1817 for (
k=0;
k<=
i;
k++)
1829 h3->m[
j] =
prMoveR( hh->m[
k], tmpR,origR);
1841#ifdef WITH_OLD_MINOR
1845poly idMinor(
matrix a,
int ar,
unsigned long which, ideal
R)
1849 int *rowchoise,*colchoise;
1855 rowchoise=(
int *)
omAlloc(ar*
sizeof(
int));
1856 colchoise=(
int *)
omAlloc(ar*
sizeof(
int));
1867 for (
i=1;
i<=ar;
i++)
1869 for (
j=1;
j<=ar;
j++)
1885 for (
i=1;
i<=ar;
i++)
1908 int *rowchoise,*colchoise;
1918 rowchoise=(
int *)
omAlloc(ar*
sizeof(
int));
1919 colchoise=(
int *)
omAlloc(ar*
sizeof(
int));
1929 for (
i=1;
i<=ar;
i++)
1931 for (
j=1;
j<=ar;
j++)
1958 for (
i=1;
i<=ar;
i++)
1986 const int r = a->
nrows;
1987 const int c = a->
ncols;
1989 if((ar<=0) || (ar>r) || (ar>c))
1991 Werror(
"%d-th minor, matrix is %dx%d",ar,r,c);
2003 for (
int i=r*c-1;
i>=0;
i--)
2056 if (id1->m[
i] !=
NULL)
2085 if (
w->length()+1 < cmax)
2226 int i,
k,rk,flength=0,slength,
length;
2247 ((*wtmp)[
i])=(**w)[
i];
2271 if(temp->m[
i]!=
NULL)
2309 if (syz_ring != orig_ring)
2319 unsigned save_opt,save_opt2;
2336 if (wtmp!=
NULL)
delete wtmp;
2342 if (s_temp1->m[
i]!=
NULL)
2360 if (s_temp1->m[
i]!=
NULL)
2368 poly q =
prMoveR( s_temp1->m[
i], syz_ring,orig_ring);
2369 s_temp1->m[
i] =
NULL;
2383 }
while (q !=
NULL);
2396 if (syz_ring!=orig_ring)
2423 int i,flength=0,slength,
length;
2444 ((*wtmp)[
i])=(**w)[
i];
2467 if (syz_ring != orig_ring)
2478 unsigned save_opt,save_opt2;
2496 if (wtmp!=
NULL)
delete wtmp;
2502 if (syz_ring!=orig_ring)
2543 for (
i=0;
i<(*convert)->length();
i++)
2557 while ((
j>0) && (kbase->m[
j-1]==
NULL))
j--;
2558 if (
j==0)
return -1;
2567 if (
j==0)
return -1;
2629 while ((
i>0) && (kbase->m[
i-1]==
NULL))
i--;
2632 while ((
j>0) && (arg->m[
j-1]==
NULL))
j--;
2636 while ((
j>0) && (arg->m[
j-1]==
NULL))
j--;
2690 int i,next_gen,next_comp;
2694 int *red_comp=(
int*)
omAlloc((
res->rank+1)*
sizeof(int));
2695 for (
i=
res->rank;
i>=0;
i--) red_comp[
i]=
i;
2701 if (next_gen<0)
break;
2704 for(
i=next_comp+1;
i<=arg->rank;
i++) red_comp[
i]--;
2707 for(
i=next_comp;
i<(*w)->length();
i++) (**
w)[
i-1]=(**w)[
i];
2717 int nl=
si_max((*w)->length()-del,1);
2719 for(
i=0;
i<
res->rank;
i++) (*wtmp)[
i]=(**w)[
i];
2729poly
id_GCD(poly
f, poly
g,
const ring r)
2733 ideal I=
idInit(2,1); I->m[0]=
f; I->m[1]=
g;
2747 ideal I=
idInit(2,1); I->m[0]=
f; I->m[1]=
g;
2775 int cnt=
IDELEMS(xx[0])*xx[0]->nrows;
2777 result->nrows=xx[0]->nrows;
2778 result->ncols=xx[0]->ncols;
2781 number *
x=(number *)
omAlloc(rl*
sizeof(number));
2782 for(
i=cnt-1;
i>=0;
i--)
2788 for(
j=rl-1;
j>=0;
j--)
2797 for(
j=rl-1;
j>=0;
j--)
2810 number n=n_ChineseRemainder(
x,q,rl,
R->cf);
2812 for(
j=rl-1;
j>=0;
j--)
2856 for(
i=cnt-1;
i>=0;
i--)
2960 for (
int i = 0;
i < idsize;
i++)
2962 id_sort[
i].
p =
id->m[
i];
2966 int index, index_i, index_j;
2968 for (
int j = 1;
j < idsize;
j++)
2972 index_i = id_sort[
i].
index;
2973 index_j = id_sort[
j].
index;
2974 if (index_j > index_i)
2999 if (strat->
P.t_p==
NULL)
3008 bool nonTrivialSaturationToBeDone=
true;
3011 nonTrivialSaturationToBeDone=
false;
3018 if (mm[
i]>0) nonTrivialSaturationToBeDone=
true;
3023 if (!nonTrivialSaturationToBeDone)
break;
3025 if (nonTrivialSaturationToBeDone)
3054 poly
p=strat->
P.t_p;
3061 bool nonTrivialSaturationToBeDone=
true;
3064 nonTrivialSaturationToBeDone=
false;
3071 if (mm[
i]>0) nonTrivialSaturationToBeDone =
true;
3076 if (!nonTrivialSaturationToBeDone)
break;
3078 if (nonTrivialSaturationToBeDone)
3117 for (
int i=0;
i<
k;
i++)
3126 WerrorS(
"ideal generators must be variables");
3134 for (
int i=1;
i<=r->N;
i++)
3142 Werror(
"exponent(x(%d)^%d) must be 0 or 1",
i,li);
3157 if (strcmp(n,
"default")==0) alg=
GbDefault;
3158 else if (strcmp(n,
"slimgb")==0) alg=
GbSlimgb;
3159 else if (strcmp(n,
"std")==0) alg=
GbStd;
3160 else if (strcmp(n,
"sba")==0) alg=
GbSba;
3161 else if (strcmp(n,
"singmatic")==0) alg=
GbSingmatic;
3162 else if (strcmp(n,
"groebner")==0) alg=
GbGroebner;
3163 else if (strcmp(n,
"modstd")==0) alg=
GbModstd;
3164 else if (strcmp(n,
"ffmod")==0) alg=
GbFfmod;
3165 else if (strcmp(n,
"nfmod")==0) alg=
GbNfmod;
3166 else if (strcmp(n,
"std:sat")==0) alg=
GbStdSat;
3167 else Warn(
">>%s<< is an unknown algorithm",n);
3179 WarnS(
"requires: coef:field, commutative, global ordering, not qring");
3181 else if (alg==
GbSba)
3190 WarnS(
"requires: coef:domain, commutative, global ordering");
3200 WarnS(
">>modStd<< not found");
3209 WarnS(
"requires: coef:QQ, commutative, global ordering");
3215 WarnS(
">>satstd<< not found");
static int si_max(const int a, const int b)
static int si_min(const int a, const int b)
const CanonicalForm CFMap CFMap & N
static CanonicalForm bound(const CFMatrix &M)
poly singclap_pdivide(poly f, poly g, const ring r)
Class used for (list of) interpreter objects.
Coefficient rings, fields and other domains suitable for Singular polynomials.
static FORCE_INLINE BOOLEAN n_IsZero(number n, const coeffs r)
TRUE iff 'n' represents the zero element.
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
const CanonicalForm int s
CanonicalForm divide(const CanonicalForm &ff, const CanonicalForm &f, const CFList &as)
const Variable & v
< [in] a sqrfree bivariate poly
void WerrorS(const char *s)
GbVariant syGetAlgorithm(char *n, const ring r, const ideal)
static void idPrepareStd(ideal s_temp, int k)
matrix idCoeffOfKBase(ideal arg, ideal kbase, poly how)
void idLiftW(ideal P, ideal Q, int n, matrix &T, ideal &R, int *w)
static void idLift_setUnit(int e_mod, matrix *unit)
ideal idSyzygies(ideal h1, tHomog h, intvec **w, BOOLEAN setSyzComp, BOOLEAN setRegularity, int *deg, GbVariant alg)
matrix idDiff(matrix i, int k)
BOOLEAN idTestHomModule(ideal m, ideal Q, intvec *w)
ideal idLiftStd(ideal h1, matrix *T, tHomog hi, ideal *S, GbVariant alg, ideal h11)
void idDelEquals(ideal id)
int pCompare_qsort(const void *a, const void *b)
ideal idQuot(ideal h1, ideal h2, BOOLEAN h1IsStb, BOOLEAN resultIsIdeal)
ideal idMinors(matrix a, int ar, ideal R)
compute all ar-minors of the matrix a the caller of mpRecMin the elements of the result are not in R ...
BOOLEAN idIsSubModule(ideal id1, ideal id2)
ideal idSeries(int n, ideal M, matrix U, intvec *w)
static ideal idGroebner(ideal temp, int syzComp, GbVariant alg, intvec *hilb=NULL, intvec *w=NULL, tHomog hom=testHomog)
ideal idCreateSpecialKbase(ideal kBase, intvec **convert)
static ideal idPrepare(ideal h1, ideal h11, tHomog hom, int syzcomp, intvec **w, GbVariant alg)
poly id_GCD(poly f, poly g, const ring r)
int idIndexOfKBase(poly monom, ideal kbase)
poly idDecompose(poly monom, poly how, ideal kbase, int *pos)
matrix idDiffOp(ideal I, ideal J, BOOLEAN multiply)
void idSort_qsort(poly_sort *id_sort, int idsize)
static ideal idInitializeQuot(ideal h1, ideal h2, BOOLEAN h1IsStb, BOOLEAN *addOnlyOne, int *kkmax)
ideal idElimination(ideal h1, poly delVar, intvec *hilb, GbVariant alg)
static ideal idSectWithElim(ideal h1, ideal h2, GbVariant alg)
ideal idMinBase(ideal h1)
ideal idSect(ideal h1, ideal h2, GbVariant alg)
ideal idMultSect(resolvente arg, int length, GbVariant alg)
void idKeepFirstK(ideal id, const int k)
keeps the first k (>= 1) entries of the given ideal (Note that the kept polynomials may be zero....
ideal idLift(ideal mod, ideal submod, ideal *rest, BOOLEAN goodShape, BOOLEAN isSB, BOOLEAN divide, matrix *unit, GbVariant alg)
represents the generators of submod in terms of the generators of mod (Matrix(SM)*U-Matrix(rest)) = M...
STATIC_VAR int * id_satstdSaturatingVariables
ideal idExtractG_T_S(ideal s_h3, matrix *T, ideal *S, long syzComp, int h1_size, BOOLEAN inputIsIdeal, const ring oring, const ring sring)
static void idDeleteComps(ideal arg, int *red_comp, int del)
ideal idModulo(ideal h2, ideal h1, tHomog hom, intvec **w, matrix *T, GbVariant alg)
ideal id_Farey(ideal x, number N, const ring r)
ideal id_Satstd(const ideal I, ideal J, const ring r)
ideal idModuloLP(ideal h2, ideal h1, tHomog, intvec **w, matrix *T, GbVariant alg)
static BOOLEAN id_sat_vars_sp(kStrategy strat)
ideal idMinEmbedding(ideal arg, BOOLEAN inPlace, intvec **w)
#define idDelete(H)
delete an ideal
#define idSimpleAdd(A, B)
void idGetNextChoise(int r, int end, BOOLEAN *endch, int *choise)
BOOLEAN idIs0(ideal h)
returns true if h is the zero ideal
static BOOLEAN idHomModule(ideal m, ideal Q, intvec **w)
static BOOLEAN idHomIdeal(ideal id, ideal Q=NULL)
static ideal idMult(ideal h1, ideal h2)
hh := h1 * h2
#define idMaxIdeal(D)
initialise the maximal ideal (at 0)
void idInitChoise(int r, int beg, int end, BOOLEAN *endch, int *choise)
static intvec * idSort(ideal id, BOOLEAN nolex=TRUE)
ideal idFreeModule(int i)
static BOOLEAN length(leftv result, leftv arg)
intvec * ivCopy(const intvec *o)
idhdl ggetid(const char *n)
EXTERN_VAR omBin sleftv_bin
leftv ii_CallLibProcM(const char *n, void **args, int *arg_types, const ring R, BOOLEAN &err)
args: NULL terminated array of arguments arg_types: 0 terminated array of corresponding types
void * iiCallLibProc1(const char *n, void *arg, int arg_type, BOOLEAN &err)
void ipPrint_MA0(matrix m, const char *name)
void p_TakeOutComp(poly *p, long comp, poly *q, int *lq, const ring r)
ideal kMin_std(ideal F, ideal Q, tHomog h, intvec **w, ideal &M, intvec *hilb, int syzComp, int reduced)
poly kNF(ideal F, ideal Q, poly p, int syzComp, int lazyReduce)
ideal kSba(ideal F, ideal Q, tHomog h, intvec **w, int sbaOrder, int arri, intvec *hilb, int syzComp, int newIdeal, intvec *vw)
ideal kStd(ideal F, ideal Q, tHomog h, intvec **w, intvec *hilb, int syzComp, int newIdeal, intvec *vw, s_poly_proc_t sp)
static nc_type & ncRingType(nc_struct *p)
BOOLEAN nc_CheckSubalgebra(poly PolyVar, ring r)
matrix mpNew(int r, int c)
create a r x c zero-matrix
matrix mp_MultP(matrix a, poly p, const ring R)
multiply a matrix 'a' by a poly 'p', destroy the args
matrix mp_Copy(matrix a, const ring r)
copies matrix a (from ring r to r)
void mp_MinorToResult(ideal result, int &elems, matrix a, int r, int c, ideal R, const ring)
entries of a are minors and go to result (only if not in R)
void mp_RecMin(int ar, ideal result, int &elems, matrix a, int lr, int lc, poly barDiv, ideal R, const ring r)
produces recursively the ideal of all arxar-minors of a
poly mp_DetBareiss(matrix a, const ring r)
returns the determinant of the matrix m; uses Bareiss algorithm
#define MATELEM(mat, i, j)
1-based access to matrix
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
#define __p_GetComp(p, r)
#define omFreeSize(addr, size)
#define omFreeBin(addr, bin)
#define SI_RESTORE_OPT1(A)
#define SI_RESTORE_OPT2(A)
#define TEST_OPT_RETURN_SB
#define TEST_V_INTERSECT_ELIM
#define TEST_V_INTERSECT_SYZ
#define TEST_OPT_NOTREGULARITY
static int index(p_Length length, p_Ord ord)
poly p_DivideM(poly a, poly b, const ring r)
poly p_Farey(poly p, number N, const ring r)
int p_Weight(int i, const ring r)
void p_Shift(poly *p, int i, const ring r)
shifts components of the vector p by i
int p_Compare(const poly a, const poly b, const ring R)
long p_DegW(poly p, const int *w, const ring R)
void p_SetModDeg(intvec *w, ring r)
int p_Var(poly m, const ring r)
void pEnlargeSet(poly **p, int l, int increment)
long p_Deg(poly a, const ring r)
static poly p_Neg(poly p, const ring r)
static poly p_Add_q(poly p, poly q, const ring r)
static void p_LmDelete(poly p, const ring r)
static long p_SubExp(poly p, int v, long ee, ring r)
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent @Note: VarOffset encodes the position in p->exp
static long p_MinComp(poly p, ring lmRing, ring tailRing)
static void p_Setm(poly p, const ring r)
static poly p_Copy_noCheck(poly p, const ring r)
returns a copy of p (without any additional testing)
static number p_SetCoeff(poly p, number n, ring r)
static poly pReverse(poly p)
static poly p_Head(const poly p, const ring r)
copy the (leading) term of p
static int p_LmCmp(poly p, poly q, const ring r)
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent @Note: the integer VarOffset encodes:
static void p_Delete(poly *p, const ring r)
static void p_GetExpV(poly p, int *ev, const ring r)
static poly p_LmFreeAndNext(poly p, ring)
static poly p_Copy(poly p, const ring r)
returns a copy of p
void rChangeCurrRing(ring r)
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
Compatibility layer for legacy polynomial operations (over currRing)
#define pHead(p)
returns newly allocated copy of Lm(p), coef is copied, next=NULL, p might be NULL
#define pGetComp(p)
Component.
#define pSetCoeff(p, n)
deletes old coeff before setting the new one
#define pSeries(n, p, u, w)
#define pGetExp(p, i)
Exponent.
#define pSetmComp(p)
TODO:
#define pEqualPolys(p1, p2)
#define pDivisibleBy(a, b)
returns TRUE, if leading monom of a divides leading monom of b i.e., if there exists a expvector c > ...
void pTakeOutComp(poly *p, long comp, poly *q, int *lq, const ring R=currRing)
Splits *p into two polys: *q which consists of all monoms with component == comp and *p of all other ...
#define pCopy(p)
return a copy of the poly
poly prMoveR(poly &p, ring src_r, ring dest_r)
ideal idrMoveR(ideal &id, ring src_r, ring dest_r)
poly prCopyR(poly p, ring src_r, ring dest_r)
ideal idrCopyR(ideal id, ring src_r, ring dest_r)
ideal idrMoveR_NoSort(ideal &id, ring src_r, ring dest_r)
poly prMoveR_NoSort(poly &p, ring src_r, ring dest_r)
ideal idrCopyR_NoSort(ideal id, ring src_r, ring dest_r)
void PrintS(const char *s)
void Werror(const char *fmt,...)
BOOLEAN rComplete(ring r, int force)
this needs to be called whenever a new ring is created: new fields in ring are created (like VarOffse...
ring rAssure_SyzComp(const ring r, BOOLEAN complete)
BOOLEAN nc_rComplete(const ring src, ring dest, bool bSetupQuotient)
ring rAssure_SyzOrder(const ring r, BOOLEAN complete)
ring rCopy0(const ring r, BOOLEAN copy_qideal, BOOLEAN copy_ordering)
void rDelete(ring r)
unconditionally deletes fields in r
void rSetSyzComp(int k, const ring r)
ring rAssure_dp_C(const ring r)
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
static int rBlocks(const ring r)
static BOOLEAN rField_is_Domain(const ring r)
static BOOLEAN rIsLPRing(const ring r)
@ ringorder_a64
for int64 weights
@ ringorder_aa
for idElimination, like a, except pFDeg, pWeigths ignore it
static BOOLEAN rField_is_Q(const ring r)
static BOOLEAN rIsNCRing(const ring r)
static short rVar(const ring r)
#define rVar(r) (r->N)
BOOLEAN rHasGlobalOrdering(const ring r)
#define rField_is_Ring(R)
ideal idInit(int idsize, int rank)
initialise an ideal / module
void id_Delete(ideal *h, ring r)
deletes an ideal/module/matrix
matrix id_Module2Matrix(ideal mod, const ring R)
long id_RankFreeModule(ideal s, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s
int id_ReadOutPivot(ideal arg, int *comp, const ring r)
void id_DelMultiples(ideal id, const ring r)
ideal id = (id[i]), c any unit if id[i] = c*id[j] then id[j] is deleted for j > i
ideal id_Matrix2Module(matrix mat, const ring R)
converts mat to module, destroys mat
ideal id_SimpleAdd(ideal h1, ideal h2, const ring R)
concat the lists h1 and h2 without zeros
void idSkipZeroes(ideal ide)
gives an ideal/module the minimal possible size
void id_Shift(ideal M, int s, const ring r)
ideal id_ChineseRemainder(ideal *xx, number *q, int rl, const ring r)
long sm_ExpBound(ideal m, int di, int ra, int t, const ring currRing)
ring sm_RingChange(const ring origR, long bound)
void sm_KillModifiedRing(ring r)
void syGaussForOne(ideal syz, int elnum, int ModComp, int from, int till)
intvec * syBetti(resolvente res, int length, int *regularity, intvec *weights, BOOLEAN tomin, int *row_shift)
resolvente sySchreyerResolvente(ideal arg, int maxlength, int *length, BOOLEAN isMonomial=FALSE, BOOLEAN notReplace=FALSE)
ideal t_rep_gb(const ring r, ideal arg_I, int syz_comp, BOOLEAN F4_mode)
THREAD_VAR double(* wFunctional)(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)
void wCall(poly *s, int sl, int *x, double wNsqr, const ring R)
double wFunctionalBuch(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)