My Project
Loading...
Searching...
No Matches
Macros | Functions
p_polys.h File Reference
#include "misc/mylimits.h"
#include "misc/intvec.h"
#include "coeffs/coeffs.h"
#include "polys/monomials/monomials.h"
#include "polys/monomials/ring.h"
#include "polys/templates/p_MemAdd.h"
#include "polys/templates/p_MemCmp.h"
#include "polys/templates/p_Procs.h"
#include "polys/sbuckets.h"
#include "polys/nc/nc.h"

Go to the source code of this file.

Macros

#define pIfThen(cond, check)   do {if (cond) {check;}} while (0)
 
#define p_Test(p, r)   _p_Test(p, r, PDEBUG)
 
#define p_LmTest(p, r)   _p_LmTest(p, r, PDEBUG)
 
#define pp_Test(p, lmRing, tailRing)   _pp_Test(p, lmRing, tailRing, PDEBUG)
 
#define p_SetmComp   p_Setm
 
#define __p_Mult_nn(p, n, r)   r->p_Procs->p_Mult_nn(p, n, r)
 
#define __pp_Mult_nn(p, n, r)   r->p_Procs->pp_Mult_nn(p, n, r)
 
#define _p_LmCmpAction(p, q, r, actionE, actionG, actionS)
 
#define pDivAssume(x)   do {} while (0)
 
#define p_LmCmpAction(p, q, r, actionE, actionG, actionS)    _p_LmCmpAction(p, q, r, actionE, actionG, actionS)
 
#define p_LmEqual(p1, p2, r)   p_ExpVectorEqual(p1, p2, r)
 

Functions

poly p_Farey (poly p, number N, const ring r)
 
poly p_ChineseRemainder (poly *xx, number *x, number *q, int rl, CFArray &inv_cache, const ring R)
 
unsigned long p_GetShortExpVector (const poly a, const ring r)
 
BOOLEAN p_DivisibleByRingCase (poly f, poly g, const ring r)
 divisibility check over ground ring (which may contain zero divisors); TRUE iff LT(f) divides LT(g), i.e., LT(f)*c*m = LT(g), for some coefficient c and some monomial m; does not take components into account More...
 
poly p_One (const ring r)
 
int p_MinDeg (poly p, intvec *w, const ring R)
 
long p_DegW (poly p, const int *w, const ring R)
 
BOOLEAN p_OneComp (poly p, const ring r)
 return TRUE if all monoms have the same component More...
 
int p_IsPurePower (const poly p, const ring r)
 return i, if head depends only on var(i) More...
 
int p_IsUnivariate (poly p, const ring r)
 return i, if poly depends only on var(i) More...
 
int p_GetVariables (poly p, int *e, const ring r)
 set entry e[i] to 1 if var(i) occurs in p, ignore var(j) if e[j]>0 return #(e[i]>0) More...
 
poly p_ISet (long i, const ring r)
 returns the poly representing the integer i More...
 
poly p_NSet (number n, const ring r)
 returns the poly representing the number n, destroys n More...
 
void p_Vec2Polys (poly v, poly **p, int *len, const ring r)
 
poly p_Vec2Poly (poly v, int k, const ring r)
 
void p_Vec2Array (poly v, poly *p, int len, const ring r)
 julia: vector to already allocated array (len=p_MaxComp(v,r)) More...
 
void p_ShallowDelete (poly *p, const ring r)
 
poly p_Sub (poly a, poly b, const ring r)
 
poly p_Power (poly p, int i, const ring r)
 
BOOLEAN pIsMonomOf (poly p, poly m)
 
BOOLEAN pHaveCommonMonoms (poly p, poly q)
 
BOOLEAN p_LmCheckIsFromRing (poly p, ring r)
 
BOOLEAN p_LmCheckPolyRing (poly p, ring r)
 
BOOLEAN p_CheckIsFromRing (poly p, ring r)
 
BOOLEAN p_CheckPolyRing (poly p, ring r)
 
BOOLEAN p_CheckRing (ring r)
 
BOOLEAN _p_Test (poly p, ring r, int level)
 
BOOLEAN _p_LmTest (poly p, ring r, int level)
 
BOOLEAN _pp_Test (poly p, ring lmRing, ring tailRing, int level)
 
static int pLength (poly a)
 
poly p_Last (const poly a, int &l, const ring r)
 
void p_Norm (poly p1, const ring r)
 
void p_Normalize (poly p, const ring r)
 
void p_ProjectiveUnique (poly p, const ring r)
 
void p_ContentForGB (poly p, const ring r)
 
void p_Content (poly p, const ring r)
 
void p_SimpleContent (poly p, int s, const ring r)
 
number p_InitContent (poly ph, const ring r)
 
poly p_Cleardenom (poly p, const ring r)
 
void p_Cleardenom_n (poly p, const ring r, number &c)
 
int p_Size (poly p, const ring r)
 
poly p_Homogen (poly p, int varnum, const ring r)
 
BOOLEAN p_IsHomogeneous (poly p, const ring r)
 
BOOLEAN p_IsHomogeneousW (poly p, const intvec *w, const ring r)
 
BOOLEAN p_IsHomogeneousW (poly p, const intvec *w, const intvec *module_w, const ring r)
 
static void p_Setm (poly p, const ring r)
 
p_SetmProc p_GetSetmProc (const ring r)
 
poly p_Subst (poly p, int n, poly e, const ring r)
 
static unsigned long p_SetComp (poly p, unsigned long c, ring r)
 
static void p_SetCompP (poly p, int i, ring r)
 
static void p_SetCompP (poly p, int i, ring lmRing, ring tailRing)
 
static long p_MaxComp (poly p, ring lmRing, ring tailRing)
 
static long p_MaxComp (poly p, ring lmRing)
 
static long p_MinComp (poly p, ring lmRing, ring tailRing)
 
static long p_MinComp (poly p, ring lmRing)
 
static poly pReverse (poly p)
 
void pEnlargeSet (poly **p, int length, int increment)
 
void p_String0 (poly p, ring lmRing, ring tailRing)
 print p according to ShortOut in lmRing & tailRing More...
 
char * p_String (poly p, ring lmRing, ring tailRing)
 
void p_Write (poly p, ring lmRing, ring tailRing)
 
void p_Write0 (poly p, ring lmRing, ring tailRing)
 
void p_wrp (poly p, ring lmRing, ring tailRing)
 
void p_String0Short (const poly p, ring lmRing, ring tailRing)
 print p in a short way, if possible More...
 
void p_String0Long (const poly p, ring lmRing, ring tailRing)
 print p in a long way More...
 
static long p_FDeg (const poly p, const ring r)
 
static long p_LDeg (const poly p, int *l, const ring r)
 
long p_WFirstTotalDegree (poly p, ring r)
 
long p_WTotaldegree (poly p, const ring r)
 
long p_WDegree (poly p, const ring r)
 
long pLDeg0 (poly p, int *l, ring r)
 
long pLDeg0c (poly p, int *l, ring r)
 
long pLDegb (poly p, int *l, ring r)
 
long pLDeg1 (poly p, int *l, ring r)
 
long pLDeg1c (poly p, int *l, ring r)
 
long pLDeg1_Deg (poly p, int *l, ring r)
 
long pLDeg1c_Deg (poly p, int *l, ring r)
 
long pLDeg1_Totaldegree (poly p, int *l, ring r)
 
long pLDeg1c_Totaldegree (poly p, int *l, ring r)
 
long pLDeg1_WFirstTotalDegree (poly p, int *l, ring r)
 
long pLDeg1c_WFirstTotalDegree (poly p, int *l, ring r)
 
BOOLEAN p_EqualPolys (poly p1, poly p2, const ring r)
 
BOOLEAN p_EqualPolys (poly p1, poly p2, const ring r1, const ring r2)
 same as the usual p_EqualPolys for polys belonging to equal rings More...
 
long p_Deg (poly a, const ring r)
 
static number p_SetCoeff (poly p, number n, ring r)
 
static long p_GetOrder (poly p, ring r)
 
static unsigned long p_AddComp (poly p, unsigned long v, ring r)
 
static unsigned long p_SubComp (poly p, unsigned long v, ring r)
 
static long p_GetExp (const poly p, const unsigned long iBitmask, const int VarOffset)
 get a single variable exponent @Note: the integer VarOffset encodes: More...
 
static unsigned long p_SetExp (poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
 set a single variable exponent @Note: VarOffset encodes the position in p->exp More...
 
static long p_GetExp (const poly p, const ring r, const int VarOffset)
 
static long p_SetExp (poly p, const long e, const ring r, const int VarOffset)
 
static long p_GetExp (const poly p, const int v, const ring r)
 get v^th exponent for a monomial More...
 
static long p_SetExp (poly p, const int v, const long e, const ring r)
 set v^th exponent for a monomial More...
 
static long p_IncrExp (poly p, int v, ring r)
 
static long p_DecrExp (poly p, int v, ring r)
 
static long p_AddExp (poly p, int v, long ee, ring r)
 
static long p_SubExp (poly p, int v, long ee, ring r)
 
static long p_MultExp (poly p, int v, long ee, ring r)
 
static long p_GetExpSum (poly p1, poly p2, int i, ring r)
 
static long p_GetExpDiff (poly p1, poly p2, int i, ring r)
 
static int p_Comp_k_n (poly a, poly b, int k, ring r)
 
static poly p_New (const ring, omBin bin)
 
static poly p_New (ring r)
 
static void p_LmFree (poly p, ring)
 
static void p_LmFree (poly *p, ring)
 
static poly p_LmFreeAndNext (poly p, ring)
 
static void p_LmDelete (poly p, const ring r)
 
static void p_LmDelete0 (poly p, const ring r)
 
static void p_LmDelete (poly *p, const ring r)
 
static poly p_LmDeleteAndNext (poly p, const ring r)
 
unsigned long p_GetMaxExpL (poly p, const ring r, unsigned long l_max=0)
 return the maximal exponent of p in form of the maximal long var More...
 
poly p_GetMaxExpP (poly p, ring r)
 return monomial r such that GetExp(r,i) is maximum of all monomials in p; coeff == 0, next == NULL, ord is not set More...
 
static unsigned long p_GetMaxExp (const unsigned long l, const ring r)
 
static unsigned long p_GetMaxExp (const poly p, const ring r)
 
static unsigned long p_GetTotalDegree (const unsigned long l, const ring r, const int number_of_exps)
 
static poly p_Copy_noCheck (poly p, const ring r)
 returns a copy of p (without any additional testing) More...
 
static poly p_Copy (poly p, const ring r)
 returns a copy of p More...
 
static poly p_Head (const poly p, const ring r)
 copy the (leading) term of p More...
 
poly p_Head0 (const poly p, const ring r)
 like p_Head, but allow NULL coeff More...
 
poly p_CopyPowerProduct (const poly p, const ring r)
 like p_Head, but with coefficient 1 More...
 
poly p_CopyPowerProduct0 (const poly p, const number n, const ring r)
 like p_Head, but with coefficient n More...
 
static poly p_Copy (poly p, const ring lmRing, const ring tailRing)
 returns a copy of p with Lm(p) from lmRing and Tail(p) from tailRing More...
 
static void p_Delete (poly *p, const ring r)
 
static void p_Delete (poly *p, const ring lmRing, const ring tailRing)
 
static poly p_ShallowCopyDelete (poly p, const ring r, omBin bin)
 
static poly p_Add_q (poly p, poly q, const ring r)
 
static poly p_Add_q (poly p, poly q, int &lp, int lq, const ring r)
 like p_Add_q, except that if lp == pLength(lp) lq == pLength(lq) then lp == pLength(p+q) More...
 
static poly p_Mult_nn (poly p, number n, const ring r)
 
static poly p_Mult_nn (poly p, number n, const ring lmRing, const ring tailRing)
 
static poly pp_Mult_nn (poly p, number n, const ring r)
 
static BOOLEAN p_LmIsConstantComp (const poly p, const ring r)
 
static BOOLEAN p_LmIsConstant (const poly p, const ring r)
 
static poly pp_Mult_mm (poly p, poly m, const ring r)
 
static poly pp_mm_Mult (poly p, poly m, const ring r)
 
static poly p_Mult_mm (poly p, poly m, const ring r)
 
static poly p_mm_Mult (poly p, poly m, const ring r)
 
static poly p_Minus_mm_Mult_qq (poly p, const poly m, const poly q, int &lp, int lq, const poly spNoether, const ring r)
 
static poly p_Minus_mm_Mult_qq (poly p, const poly m, const poly q, const ring r)
 
static poly pp_Mult_Coeff_mm_DivSelect (poly p, const poly m, const ring r)
 
static poly pp_Mult_Coeff_mm_DivSelect (poly p, int &lp, const poly m, const ring r)
 
static poly p_Neg (poly p, const ring r)
 
poly _p_Mult_q (poly p, poly q, const int copy, const ring r)
 Returns: p * q, Destroys: if !copy then p, q Assumes: pLength(p) >= 2 pLength(q) >=2, !rIsPluralRing(r) More...
 
static poly p_Mult_q (poly p, poly q, const ring r)
 
static poly pp_Mult_qq (poly p, poly q, const ring r)
 
static poly p_Plus_mm_Mult_qq (poly p, poly m, poly q, int &lp, int lq, const ring r)
 
static poly p_Plus_mm_Mult_qq (poly p, poly m, poly q, const ring r)
 
static poly p_Merge_q (poly p, poly q, const ring r)
 
static poly p_SortAdd (poly p, const ring r, BOOLEAN revert=FALSE)
 
static poly p_SortMerge (poly p, const ring r, BOOLEAN revert=FALSE)
 
static char * p_String (poly p, ring p_ring)
 
static void p_String0 (poly p, ring p_ring)
 
static void p_Write (poly p, ring p_ring)
 
static void p_Write0 (poly p, ring p_ring)
 
static void p_wrp (poly p, ring p_ring)
 
static void p_MemAdd_NegWeightAdjust (poly p, const ring r)
 
static void p_MemSub_NegWeightAdjust (poly p, const ring r)
 
static void p_ExpVectorCopy (poly d_p, poly s_p, const ring r)
 
static poly p_Init (const ring r, omBin bin)
 
static poly p_Init (const ring r)
 
static poly p_LmInit (poly p, const ring r)
 
static poly p_LmInit (poly s_p, const ring s_r, const ring d_r, omBin d_bin)
 
static poly p_LmInit (poly s_p, const ring s_r, const ring d_r)
 
static poly p_GetExp_k_n (poly p, int l, int k, const ring r)
 
static poly p_LmShallowCopyDelete (poly p, const ring r)
 
static void p_ExpVectorAdd (poly p1, poly p2, const ring r)
 
static void p_ExpVectorSum (poly pr, poly p1, poly p2, const ring r)
 
static void p_ExpVectorSub (poly p1, poly p2, const ring r)
 
static void p_ExpVectorAddSub (poly p1, poly p2, poly p3, const ring r)
 
static void p_ExpVectorDiff (poly pr, poly p1, poly p2, const ring r)
 
static BOOLEAN p_ExpVectorEqual (poly p1, poly p2, const ring r)
 
static long p_Totaldegree (poly p, const ring r)
 
static void p_GetExpV (poly p, int *ev, const ring r)
 
static void p_GetExpVL (poly p, int64 *ev, const ring r)
 
static int64 p_GetExpVLV (poly p, int64 *ev, const ring r)
 
static void p_SetExpV (poly p, int *ev, const ring r)
 
static void p_SetExpVL (poly p, int64 *ev, const ring r)
 
static void p_SetExpVLV (poly p, int64 *ev, int64 comp, const ring r)
 
static int p_LmCmp (poly p, poly q, const ring r)
 
static int p_LtCmp (poly p, poly q, const ring r)
 
static int p_LtCmpNoAbs (poly p, poly q, const ring r)
 
static int p_LtCmpOrdSgnDiffM (poly p, poly q, const ring r)
 
static int p_LtCmpOrdSgnDiffP (poly p, poly q, const ring r)
 
static int p_LtCmpOrdSgnEqM (poly p, poly q, const ring r)
 
static int p_LtCmpOrdSgnEqP (poly p, poly q, const ring r)
 
BOOLEAN p_ComparePolys (poly p1, poly p2, const ring r)
 returns TRUE if p1 is a skalar multiple of p2 assume p1 != NULL and p2 != NULL More...
 
static int p_Cmp (poly p1, poly p2, ring r)
 
static int p_CmpPolys (poly p1, poly p2, ring r)
 
static BOOLEAN _p_LmDivisibleByNoComp (poly a, poly b, const ring r)
 return: FALSE, if there exists i, such that a->exp[i] > b->exp[i] TRUE, otherwise (1) Consider long vars, instead of single exponents (2) Clearly, if la > lb, then FALSE (3) Suppose la <= lb, and consider first bits of single exponents in l: if TRUE, then value of these bits is la ^ lb if FALSE, then la-lb causes an "overflow" into one of those bits, i.e., la ^ lb != la - lb More...
 
static BOOLEAN _p_LmDivisibleByNoComp (poly a, const ring r_a, poly b, const ring r_b)
 
static BOOLEAN _p_LmDivisibleByNoCompPart (poly a, const ring r_a, poly b, const ring r_b, const int start, const int end)
 
static BOOLEAN _p_LmDivisibleByPart (poly a, const ring r_a, poly b, const ring r_b, const int start, const int end)
 
static BOOLEAN p_LmDivisibleByPart (poly a, poly b, const ring r, const int start, const int end)
 
static BOOLEAN _p_LmDivisibleBy (poly a, poly b, const ring r)
 
static BOOLEAN p_LmDivisibleByNoComp (poly a, poly b, const ring r)
 
static BOOLEAN p_LmDivisibleByNoComp (poly a, const ring ra, poly b, const ring rb)
 
static BOOLEAN p_LmDivisibleBy (poly a, poly b, const ring r)
 
static BOOLEAN p_DivisibleBy (poly a, poly b, const ring r)
 
static BOOLEAN p_LmShortDivisibleBy (poly a, unsigned long sev_a, poly b, unsigned long not_sev_b, const ring r)
 
static BOOLEAN p_LmShortDivisibleByNoComp (poly a, unsigned long sev_a, poly b, unsigned long not_sev_b, const ring r)
 
static BOOLEAN p_IsConstantComp (const poly p, const ring r)
 like the respective p_LmIs* routines, except that p might be empty More...
 
static BOOLEAN p_IsConstant (const poly p, const ring r)
 
static BOOLEAN p_IsOne (const poly p, const ring R)
 either poly(1) or gen(k)?! More...
 
static BOOLEAN p_IsConstantPoly (const poly p, const ring r)
 
static BOOLEAN p_IsUnit (const poly p, const ring r)
 
static BOOLEAN p_LmExpVectorAddIsOk (const poly p1, const poly p2, const ring r)
 
void p_Split (poly p, poly *r)
 
BOOLEAN p_HasNotCF (poly p1, poly p2, const ring r)
 
BOOLEAN p_HasNotCFRing (poly p1, poly p2, const ring r)
 
poly p_mInit (const char *s, BOOLEAN &ok, const ring r)
 
const char * p_Read (const char *s, poly &p, const ring r)
 
poly p_MDivide (poly a, poly b, const ring r)
 
poly p_DivideM (poly a, poly b, const ring r)
 
poly pp_DivideM (poly a, poly b, const ring r)
 
poly p_Div_nn (poly p, const number n, const ring r)
 
void p_Lcm (const poly a, const poly b, poly m, const ring r)
 
poly p_Lcm (const poly a, const poly b, const ring r)
 
poly p_LcmRat (const poly a, const poly b, const long lCompM, const ring r)
 
poly p_GetCoeffRat (poly p, int ishift, ring r)
 
void p_LmDeleteAndNextRat (poly *p, int ishift, ring r)
 
void p_ContentRat (poly &ph, const ring r)
 
poly p_Diff (poly a, int k, const ring r)
 
poly p_DiffOp (poly a, poly b, BOOLEAN multiply, const ring r)
 
int p_Weight (int c, const ring r)
 
poly p_PolyDiv (poly &p, const poly divisor, const BOOLEAN needResult, const ring r)
 assumes that p and divisor are univariate polynomials in r, mentioning the same variable; assumes divisor != NULL; p may be NULL; assumes a global monomial ordering in r; performs polynomial division of p by divisor: More...
 
BOOLEAN p_VectorHasUnitB (poly p, int *k, const ring r)
 
void p_VectorHasUnit (poly p, int *k, int *len, const ring r)
 
void p_TakeOutComp (poly *p, long comp, poly *q, int *lq, const ring r)
 Splits *p into two polys: *q which consists of all monoms with component == comp and *p of all other monoms *lq == pLength(*q) On return all components pf *q == 0. More...
 
poly p_TakeOutComp (poly *p, int k, const ring r)
 
void p_DeleteComp (poly *p, int k, const ring r)
 
void pSetDegProcs (ring r, pFDegProc new_FDeg, pLDegProc new_lDeg=NULL)
 
void pRestoreDegProcs (ring r, pFDegProc old_FDeg, pLDegProc old_lDeg)
 
void p_SetModDeg (intvec *w, ring r)
 
poly pp_Jet (poly p, int m, const ring R)
 
poly p_Jet (poly p, int m, const ring R)
 
poly pp_JetW (poly p, int m, int *w, const ring R)
 
poly p_JetW (poly p, int m, int *w, const ring R)
 
poly n_PermNumber (const number z, const int *par_perm, const int OldPar, const ring src, const ring dst)
 
poly p_PermPoly (poly p, const int *perm, const ring OldRing, const ring dst, nMapFunc nMap, const int *par_perm=NULL, int OldPar=0, BOOLEAN use_mult=FALSE)
 
poly p_Series (int n, poly p, poly u, intvec *w, const ring R)
 
int p_Var (poly mi, const ring r)
 
int p_LowVar (poly p, const ring r)
 the minimal index of used variables - 1 More...
 
void p_Shift (poly *p, int i, const ring r)
 shifts components of the vector p by i More...
 
int p_Compare (const poly a, const poly b, const ring R)
 
poly p_GcdMon (poly f, poly g, const ring r)
 polynomial gcd for f=mon More...
 
poly p_Div_mm (poly p, const poly m, const ring r)
 divide polynomial by monomial More...
 
int p_MaxExpPerVar (poly p, int i, const ring r)
 max exponent of variable x_i in p More...
 

Macro Definition Documentation

◆ __p_Mult_nn

#define __p_Mult_nn (   p,
  n,
 
)    r->p_Procs->p_Mult_nn(p, n, r)

Definition at line 969 of file p_polys.h.

◆ __pp_Mult_nn

#define __pp_Mult_nn (   p,
  n,
 
)    r->p_Procs->pp_Mult_nn(p, n, r)

Definition at line 1000 of file p_polys.h.

◆ _p_LmCmpAction

#define _p_LmCmpAction (   p,
  q,
  r,
  actionE,
  actionG,
  actionS 
)
Value:
p_MemCmp_LengthGeneral_OrdGeneral(p->exp, q->exp, r->CmpL_Size, r->ordsgn, \
actionE, actionG, actionS)
int p
Definition: cfModGcd.cc:4078
#define p_MemCmp_LengthGeneral_OrdGeneral(s1, s2, length, ordsgn, actionE, actionG, actionS)
Definition: p_MemCmp.h:719

Definition at line 1274 of file p_polys.h.

◆ p_LmCmpAction

#define p_LmCmpAction (   p,
  q,
  r,
  actionE,
  actionG,
  actionS 
)     _p_LmCmpAction(p, q, r, actionE, actionG, actionS)

Definition at line 1717 of file p_polys.h.

◆ p_LmEqual

#define p_LmEqual (   p1,
  p2,
 
)    p_ExpVectorEqual(p1, p2, r)

Definition at line 1721 of file p_polys.h.

◆ p_LmTest

#define p_LmTest (   p,
 
)    _p_LmTest(p, r, PDEBUG)

Definition at line 160 of file p_polys.h.

◆ p_SetmComp

#define p_SetmComp   p_Setm

Definition at line 242 of file p_polys.h.

◆ p_Test

#define p_Test (   p,
 
)    _p_Test(p, r, PDEBUG)

Definition at line 159 of file p_polys.h.

◆ pDivAssume

#define pDivAssume (   x)    do {} while (0)

Definition at line 1280 of file p_polys.h.

◆ pIfThen

#define pIfThen (   cond,
  check 
)    do {if (cond) {check;}} while (0)

Definition at line 153 of file p_polys.h.

◆ pp_Test

#define pp_Test (   p,
  lmRing,
  tailRing 
)    _pp_Test(p, lmRing, tailRing, PDEBUG)

Definition at line 161 of file p_polys.h.

Function Documentation

◆ _p_LmDivisibleBy()

static BOOLEAN _p_LmDivisibleBy ( poly  a,
poly  b,
const ring  r 
)
inlinestatic

Definition at line 1869 of file p_polys.h.

1870{
1871 if (p_GetComp(a, r) == 0 || p_GetComp(a,r) == p_GetComp(b,r))
1872 return _p_LmDivisibleByNoComp(a, b, r);
1873 return FALSE;
1874}
#define FALSE
Definition: auxiliary.h:96
CanonicalForm b
Definition: cfModGcd.cc:4103
#define p_GetComp(p, r)
Definition: monomials.h:64
static BOOLEAN _p_LmDivisibleByNoComp(poly a, poly b, const ring r)
return: FALSE, if there exists i, such that a->exp[i] > b->exp[i] TRUE, otherwise (1) Consider long v...
Definition: p_polys.h:1763

◆ _p_LmDivisibleByNoComp() [1/2]

static BOOLEAN _p_LmDivisibleByNoComp ( poly  a,
const ring  r_a,
poly  b,
const ring  r_b 
)
inlinestatic

Definition at line 1812 of file p_polys.h.

1813{
1814 int i=r_a->N;
1815 pAssume1(r_a->N == r_b->N);
1816
1817 do
1818 {
1819 if (p_GetExp(a,i,r_a) > p_GetExp(b,i,r_b))
1820 {
1821 return FALSE;
1822 }
1823 i--;
1824 }
1825 while (i);
1826/*#ifdef HAVE_RINGS
1827 return n_DivBy(p_GetCoeff(b, r_b), p_GetCoeff(a, r_a), r_a->cf);
1828#else
1829*/
1830 return TRUE;
1831//#endif
1832}
#define TRUE
Definition: auxiliary.h:100
int i
Definition: cfEzgcd.cc:132
#define pAssume1(cond)
Definition: monomials.h:171
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent @Note: the integer VarOffset encodes:
Definition: p_polys.h:467

◆ _p_LmDivisibleByNoComp() [2/2]

static BOOLEAN _p_LmDivisibleByNoComp ( poly  a,
poly  b,
const ring  r 
)
inlinestatic

return: FALSE, if there exists i, such that a->exp[i] > b->exp[i] TRUE, otherwise (1) Consider long vars, instead of single exponents (2) Clearly, if la > lb, then FALSE (3) Suppose la <= lb, and consider first bits of single exponents in l: if TRUE, then value of these bits is la ^ lb if FALSE, then la-lb causes an "overflow" into one of those bits, i.e., la ^ lb != la - lb

Definition at line 1763 of file p_polys.h.

1764{
1765 int i=r->VarL_Size - 1;
1766 unsigned long divmask = r->divmask;
1767 unsigned long la, lb;
1768
1769 if (r->VarL_LowIndex >= 0)
1770 {
1771 i += r->VarL_LowIndex;
1772 do
1773 {
1774 la = a->exp[i];
1775 lb = b->exp[i];
1776 if ((la > lb) ||
1777 (((la & divmask) ^ (lb & divmask)) != ((lb - la) & divmask)))
1778 {
1780 return FALSE;
1781 }
1782 i--;
1783 }
1784 while (i>=r->VarL_LowIndex);
1785 }
1786 else
1787 {
1788 do
1789 {
1790 la = a->exp[r->VarL_Offset[i]];
1791 lb = b->exp[r->VarL_Offset[i]];
1792 if ((la > lb) ||
1793 (((la & divmask) ^ (lb & divmask)) != ((lb - la) & divmask)))
1794 {
1796 return FALSE;
1797 }
1798 i--;
1799 }
1800 while (i>=0);
1801 }
1802/*#ifdef HAVE_RINGS
1803 pDivAssume(p_DebugLmDivisibleByNoComp(a, b, r) == n_DivBy(p_GetCoeff(b, r), p_GetCoeff(a, r), r->cf));
1804 return (!rField_is_Ring(r)) || n_DivBy(p_GetCoeff(b, r), p_GetCoeff(a, r), r->cf);
1805#else
1806*/
1808 return TRUE;
1809//#endif
1810}
BOOLEAN p_DebugLmDivisibleByNoComp(poly a, poly b, ring r)
Definition: pDebug.cc:144
#define pDivAssume(x)
Definition: p_polys.h:1280

◆ _p_LmDivisibleByNoCompPart()

static BOOLEAN _p_LmDivisibleByNoCompPart ( poly  a,
const ring  r_a,
poly  b,
const ring  r_b,
const int  start,
const int  end 
)
inlinestatic

Definition at line 1835 of file p_polys.h.

1836{
1837 int i=end;
1838 pAssume1(r_a->N == r_b->N);
1839
1840 do
1841 {
1842 if (p_GetExp(a,i,r_a) > p_GetExp(b,i,r_b))
1843 return FALSE;
1844 i--;
1845 }
1846 while (i>=start);
1847/*#ifdef HAVE_RINGS
1848 return n_DivBy(p_GetCoeff(b, r_b), p_GetCoeff(a, r_a), r_a->cf);
1849#else
1850*/
1851 return TRUE;
1852//#endif
1853}

◆ _p_LmDivisibleByPart()

static BOOLEAN _p_LmDivisibleByPart ( poly  a,
const ring  r_a,
poly  b,
const ring  r_b,
const int  start,
const int  end 
)
inlinestatic

Definition at line 1854 of file p_polys.h.

1855{
1856 if (p_GetComp(a, r_a) == 0 || p_GetComp(a,r_a) == p_GetComp(b,r_b))
1857 return _p_LmDivisibleByNoCompPart(a, r_a, b, r_b,start,end);
1858 return FALSE;
1859}
static BOOLEAN _p_LmDivisibleByNoCompPart(poly a, const ring r_a, poly b, const ring r_b, const int start, const int end)
Definition: p_polys.h:1835

◆ _p_LmTest()

BOOLEAN _p_LmTest ( poly  p,
ring  r,
int  level 
)

Definition at line 326 of file pDebug.cc.

327{
328 if (level < 0 || p == NULL) return TRUE;
329 poly pnext = pNext(p);
330 pNext(p) = NULL;
331 BOOLEAN test_res = _p_Test(p, r, level);
332 pNext(p) = pnext;
333 return test_res;
334}
int BOOLEAN
Definition: auxiliary.h:87
int level(const CanonicalForm &f)
#define pNext(p)
Definition: monomials.h:36
#define NULL
Definition: omList.c:12
BOOLEAN _p_Test(poly p, ring r, int level)
Definition: pDebug.cc:215

◆ _p_Mult_q()

poly _p_Mult_q ( poly  p,
poly  q,
const int  copy,
const ring  r 
)

Returns: p * q, Destroys: if !copy then p, q Assumes: pLength(p) >= 2 pLength(q) >=2, !rIsPluralRing(r)

Definition at line 313 of file p_Mult_q.cc.

314{
315 assume(r != NULL);
316#ifdef HAVE_RINGS
317 if (!nCoeff_is_Domain(r->cf))
318 return _p_Mult_q_Normal_ZeroDiv(p, q, copy, r);
319#endif
320 int lp, lq, l;
321 poly pt;
322
323 // MIN_LENGTH_FACTORY must be >= MIN_LENGTH_FACTORY_QQ, MIN_FLINT_QQ, MIN_FLINT_Zp 20
325
326 if (lp < lq)
327 {
328 pt = p;
329 p = q;
330 q = pt;
331 l = lp;
332 lp = lq;
333 lq = l;
334 }
335 BOOLEAN pure_polys=(p_GetComp(p,r)==0) && (p_GetComp(q,r)==0);
336 #ifdef HAVE_FLINT
337 #if __FLINT_RELEASE >= 20503
338 if (lq>MIN_FLINT_QQ)
339 {
340 fmpq_mpoly_ctx_t ctx;
341 if (pure_polys && rField_is_Q(r) && !convSingRFlintR(ctx,r))
342 {
343 // lq is a lower bound for the length of p and q
344 poly res=Flint_Mult_MP(p,lq,q,lq,ctx,r);
345 if (!copy)
346 {
347 p_Delete(&p,r);
348 p_Delete(&q,r);
349 }
350 return res;
351 }
352 }
353 if (lq>MIN_FLINT_Zp)
354 {
355 nmod_mpoly_ctx_t ctx;
356 if (pure_polys && rField_is_Zp(r) && !convSingRFlintR(ctx,r))
357 {
358 // lq is a lower bound for the length of p and q
359 poly res=Flint_Mult_MP(p,lq,q,lq,ctx,r);
360 if (!copy)
361 {
362 p_Delete(&p,r);
363 p_Delete(&q,r);
364 }
365 return res;
366 }
367 }
368 if (lq>MIN_FLINT_Z)
369 {
370 fmpz_mpoly_ctx_t ctx;
371 if (pure_polys && rField_is_Z(r) && !convSingRFlintR(ctx,r))
372 {
373 // lq is a lower bound for the length of p and q
374 poly res=Flint_Mult_MP(p,lq,q,lq,ctx,r);
375 if (!copy)
376 {
377 p_Delete(&p,r);
378 p_Delete(&q,r);
379 }
380 return res;
381 }
382 }
383 #endif
384 #endif
386 return _p_Mult_q_Normal(p, q, copy, r);
387 else if (pure_polys
388 && ((r->cf->extRing==NULL)||(r->cf->extRing->qideal!=NULL))
389 /* exclude trans. extensions: may contain rat.funct as cf */
390 && (((lq >= MIN_LENGTH_FACTORY)
391 && (r->cf->convSingNFactoryN!=ndConvSingNFactoryN))
393 && rField_is_Q(r))))
394 {
395 poly h=singclap_pmult(p,q,r);
396 if (!copy)
397 {
398 p_Delete(&p,r);
399 p_Delete(&q,r);
400 }
401 return h;
402 }
403 else
404 {
405 lp=pLength(p);
406 lq=pLength(q);
407 return _p_Mult_q_Bucket(p, lp, q, lq, copy, r);
408 }
409}
int l
Definition: cfEzgcd.cc:100
poly singclap_pmult(poly f, poly g, const ring r)
Definition: clapsing.cc:577
static FORCE_INLINE BOOLEAN nCoeff_is_Domain(const coeffs r)
returns TRUE, if r is a field or r has no zero divisors (i.e is a domain)
Definition: coeffs.h:736
CanonicalForm res
Definition: facAbsFact.cc:60
CFArray copy(const CFList &list)
write elements of list into an array
STATIC_VAR Poly * h
Definition: janet.cc:971
#define assume(x)
Definition: mod2.h:389
Definition: lq.h:40
CanonicalForm ndConvSingNFactoryN(number, BOOLEAN, const coeffs)
Definition: numbers.cc:313
#define TEST_OPT_NOT_BUCKETS
Definition: options.h:106
static void pqLengthApprox(poly p, poly q, int &lp, int &lq, const int min)
Definition: p_Mult_q.cc:69
#define MIN_LENGTH_FACTORY
Definition: p_Mult_q.cc:304
#define MIN_FLINT_Z
Definition: p_Mult_q.cc:308
#define MIN_FLINT_QQ
Definition: p_Mult_q.cc:306
static poly _p_Mult_q_Normal(poly p, poly q, const int copy, const ring r)
Definition: p_Mult_q.cc:223
#define MIN_LENGTH_FACTORY_QQ
Definition: p_Mult_q.cc:305
static poly _p_Mult_q_Bucket(poly p, const int lp, poly q, const int lq, const int copy, const ring r)
Definition: p_Mult_q.cc:100
static poly _p_Mult_q_Normal_ZeroDiv(poly p, poly q, const int copy, const ring r)
Definition: p_Mult_q.cc:195
#define MIN_FLINT_Zp
Definition: p_Mult_q.cc:307
#define MIN_LENGTH_BUCKET
Definition: p_Mult_q.h:21
static int pLength(poly a)
Definition: p_polys.h:188
static void p_Delete(poly *p, const ring r)
Definition: p_polys.h:899
static BOOLEAN rField_is_Z(const ring r)
Definition: ring.h:509
static BOOLEAN rField_is_Zp(const ring r)
Definition: ring.h:500
static BOOLEAN rField_is_Q(const ring r)
Definition: ring.h:506

◆ _p_Test()

BOOLEAN _p_Test ( poly  p,
ring  r,
int  level 
)

Definition at line 215 of file pDebug.cc.

216{
217 assume(r->cf !=NULL);
218
219 if (PDEBUG > level) level = PDEBUG;
220 if (level < 0 || p == NULL) return TRUE;
221
222 poly p_prev = NULL;
223
224 #ifndef OM_NDEBUG
225 #ifndef X_OMALLOC
226 // check addr with level+1 so as to check bin/page of addr
227 _pPolyAssumeReturnMsg(omTestBinAddrSize(p, (omSizeWOfBin(r->PolyBin))*SIZEOF_LONG, level+1)
228 == omError_NoError, "memory error",p,r);
229 #endif
230 #endif
231
233
234 // this checks that p does not contain a loop: rather expensive O(length^2)
235 #ifndef OM_NDEBUG
236 if (level > 1)
238 #endif
239
240 int ismod = p_GetComp(p, r) != 0;
241
242 while (p != NULL)
243 {
244 // ring check
246 #ifndef OM_NDEBUG
247 #ifndef X_OMALLOC
248 // omAddr check
249 _pPolyAssumeReturnMsg(omTestBinAddrSize(p, (omSizeWOfBin(r->PolyBin))*SIZEOF_LONG, 1)
250 == omError_NoError, "memory error",p,r);
251 #endif
252 #endif
253 // number/coef check
254 _pPolyAssumeReturnMsg(p->coef != NULL || (n_GetChar(r->cf) >= 2), "NULL coef",p,r);
255
256 #ifdef LDEBUG
257 _pPolyAssumeReturnMsg(n_Test(p->coef,r->cf),"coeff err",p,r);
258 #endif
259 _pPolyAssumeReturnMsg(!n_IsZero(p->coef, r->cf), "Zero coef",p,r);
260
261 // check for valid comp
262 _pPolyAssumeReturnMsg(p_GetComp(p, r) >= 0 && (p_GetComp(p, r)<65000), "component out of range ?",p,r);
263 // check for mix poly/vec representation
264 _pPolyAssumeReturnMsg(ismod == (p_GetComp(p, r) != 0), "mixed poly/vector",p,r);
265
266 // special check for ringorder_s/S
267 if ((r->typ!=NULL) && (r->typ[0].ord_typ == ro_syzcomp))
268 {
269 long c1, cc1, ccc1, ec1;
270 sro_ord* o = &(r->typ[0]);
271
272 c1 = p_GetComp(p, r);
273 if (o->data.syzcomp.Components!=NULL)
274 {
275 cc1 = o->data.syzcomp.Components[c1];
276 ccc1 = o->data.syzcomp.ShiftedComponents[cc1];
277 }
278 else { cc1=0; ccc1=0; }
279 _pPolyAssumeReturnMsg(c1 == 0 || cc1 != 0, "Component <-> TrueComponent zero mismatch",p,r);
280 _pPolyAssumeReturnMsg(c1 == 0 || ccc1 != 0,"Component <-> ShiftedComponent zero mismatch",p,r);
281 ec1 = p->exp[o->data.syzcomp.place];
282 //pPolyAssumeReturnMsg(ec1 == ccc1, "Shifted comp out of sync. should %d, is %d");
283 if (ec1 != ccc1)
284 {
285 dPolyReportError(p,r,"Shifted comp out of sync. should %d, is %d",ccc1,ec1);
286 return FALSE;
287 }
288 }
289
290 // check that p_Setm works ok
291 if (level > 0)
292 {
293 poly p_should_equal = p_DebugInit(p, r, r);
294 _pPolyAssumeReturnMsg(p_ExpVectorEqual(p, p_should_equal, r), "p_Setm field(s) out of sync",p,r);
295 p_LmFree(p_should_equal, r);
296 }
297
298 // check order
299 if (p_prev != NULL)
300 {
301 int cmp = p_LmCmp(p_prev, p, r);
302 if (cmp == 0)
303 {
304 _pPolyAssumeReturnMsg(0, "monoms p and p->next are equal", p_prev, r);
305 }
306 else
307 _pPolyAssumeReturnMsg(p_LmCmp(p_prev, p, r) == 1, "wrong order", p_prev, r);
308
309 // check that compare worked sensibly
310 if (level > 1 && p_GetComp(p_prev, r) == p_GetComp(p, r))
311 {
312 int i;
313 for (i=r->N; i>0; i--)
314 {
315 if (p_GetExp(p_prev, i, r) != p_GetExp(p, i, r)) break;
316 }
317 _pPolyAssumeReturnMsg(i > 0, "Exponents equal but compare different", p_prev, r);
318 }
319 }
320 p_prev = p;
321 pIter(p);
322 }
323 return TRUE;
324}
#define PDEBUG
Definition: auxiliary.h:170
#define n_Test(a, r)
BOOLEAN n_Test(number a, const coeffs r)
Definition: coeffs.h:709
static FORCE_INLINE BOOLEAN n_IsZero(number n, const coeffs r)
TRUE iff 'n' represents the zero element.
Definition: coeffs.h:461
static FORCE_INLINE int n_GetChar(const coeffs r)
Return the characteristic of the coeff. domain.
Definition: coeffs.h:441
#define pFalseReturn(cond)
Definition: monomials.h:139
#define pIter(p)
Definition: monomials.h:37
#define _pPolyAssumeReturnMsg(cond, msg, p, r)
Definition: monomials.h:124
#define omSizeWOfBin(bin_ptr)
@ omError_NoError
Definition: omError.h:18
#define omTestList(ptr, level)
Definition: omList.h:81
static poly p_DebugInit(poly p, ring src_ring, ring dest_ring)
Definition: pDebug.cc:198
BOOLEAN dPolyReportError(poly p, ring r, const char *fmt,...)
Definition: pDebug.cc:43
BOOLEAN p_CheckRing(ring r)
Definition: pDebug.cc:131
BOOLEAN p_LmCheckIsFromRing(poly p, ring r)
Definition: pDebug.cc:74
static BOOLEAN p_ExpVectorEqual(poly p1, poly p2, const ring r1, const ring r2)
Definition: p_polys.cc:4526
static int p_LmCmp(poly p, poly q, const ring r)
Definition: p_polys.h:1578
static void p_LmFree(poly p, ring)
Definition: p_polys.h:681
@ ro_syzcomp
Definition: ring.h:59
union sro_ord::@1 data
Definition: ring.h:219
#define omTestBinAddrSize(A, B, C)
Definition: xalloc.h:272

◆ _pp_Test()

BOOLEAN _pp_Test ( poly  p,
ring  lmRing,
ring  tailRing,
int  level 
)

Definition at line 336 of file pDebug.cc.

337{
338 if (PDEBUG > level) level = PDEBUG;
339 if (level < 0 || p == NULL) return TRUE;
340 if (pNext(p) == NULL || lmRing == tailRing) return _p_Test(p, lmRing, level);
341
342 pFalseReturn(_p_LmTest(p, lmRing, level));
343 pFalseReturn(_p_Test(pNext(p), tailRing, level));
344
345 // check that lm > Lm(tail)
346 if (level > 1)
347 {
348 poly lm = p;
349 poly tail = p_DebugInit(pNext(p), tailRing, lmRing);
350 poly pnext = pNext(lm);
351 pNext(lm) = tail;
352 BOOLEAN cmp = p_LmCmp(lm, tail, lmRing);
353 if (cmp != 1)
354 dPolyReportError(lm, lmRing, "wrong order: lm <= Lm(tail)");
355 p_LmFree(tail, lmRing);
356 pNext(lm) = pnext;
357 return (cmp == 1);
358 }
359 return TRUE;
360}
BOOLEAN _p_LmTest(poly p, ring r, int level)
Definition: pDebug.cc:326

◆ n_PermNumber()

poly n_PermNumber ( const number  z,
const int *  par_perm,
const int  OldPar,
const ring  src,
const ring  dst 
)

Definition at line 4027 of file p_polys.cc.

4028{
4029#if 0
4030 PrintS("\nSource Ring: \n");
4031 rWrite(src);
4032
4033 if(0)
4034 {
4035 number zz = n_Copy(z, src->cf);
4036 PrintS("z: "); n_Write(zz, src);
4037 n_Delete(&zz, src->cf);
4038 }
4039
4040 PrintS("\nDestination Ring: \n");
4041 rWrite(dst);
4042
4043 /*Print("\nOldPar: %d\n", OldPar);
4044 for( int i = 1; i <= OldPar; i++ )
4045 {
4046 Print("par(%d) -> par/var (%d)\n", i, par_perm[i-1]);
4047 }*/
4048#endif
4049 if( z == NULL )
4050 return NULL;
4051
4052 const coeffs srcCf = src->cf;
4053 assume( srcCf != NULL );
4054
4055 assume( !nCoeff_is_GF(srcCf) );
4056 assume( src->cf->extRing!=NULL );
4057
4058 poly zz = NULL;
4059
4060 const ring srcExtRing = srcCf->extRing;
4061 assume( srcExtRing != NULL );
4062
4063 const coeffs dstCf = dst->cf;
4064 assume( dstCf != NULL );
4065
4066 if( nCoeff_is_algExt(srcCf) ) // nCoeff_is_GF(srcCf)?
4067 {
4068 zz = (poly) z;
4069 if( zz == NULL ) return NULL;
4070 }
4071 else if (nCoeff_is_transExt(srcCf))
4072 {
4073 assume( !IS0(z) );
4074
4075 zz = NUM((fraction)z);
4076 p_Test (zz, srcExtRing);
4077
4078 if( zz == NULL ) return NULL;
4079 if( !DENIS1((fraction)z) )
4080 {
4081 if (!p_IsConstant(DEN((fraction)z),srcExtRing))
4082 WarnS("Not defined: Cannot map a rational fraction and make a polynomial out of it! Ignoring the denominator.");
4083 }
4084 }
4085 else
4086 {
4087 assume (FALSE);
4088 WerrorS("Number permutation is not implemented for this data yet!");
4089 return NULL;
4090 }
4091
4092 assume( zz != NULL );
4093 p_Test (zz, srcExtRing);
4094
4095 nMapFunc nMap = n_SetMap(srcExtRing->cf, dstCf);
4096
4097 assume( nMap != NULL );
4098
4099 poly qq;
4100 if ((par_perm == NULL) && (rPar(dst) != 0 && rVar (srcExtRing) > 0))
4101 {
4102 int* perm;
4103 perm=(int *)omAlloc0((rVar(srcExtRing)+1)*sizeof(int));
4104 for(int i=si_min(rVar(srcExtRing),rPar(dst));i>0;i--)
4105 perm[i]=-i;
4106 qq = p_PermPoly(zz, perm, srcExtRing, dst, nMap, NULL, rVar(srcExtRing)-1);
4107 omFreeSize ((ADDRESS)perm, (rVar(srcExtRing)+1)*sizeof(int));
4108 }
4109 else
4110 qq = p_PermPoly(zz, par_perm-1, srcExtRing, dst, nMap, NULL, rVar (srcExtRing)-1);
4111
4112 if(nCoeff_is_transExt(srcCf)
4113 && (!DENIS1((fraction)z))
4114 && p_IsConstant(DEN((fraction)z),srcExtRing))
4115 {
4116 number n=nMap(pGetCoeff(DEN((fraction)z)),srcExtRing->cf, dstCf);
4117 qq=p_Div_nn(qq,n,dst);
4118 n_Delete(&n,dstCf);
4119 p_Normalize(qq,dst);
4120 }
4121 p_Test (qq, dst);
4122
4123 return qq;
4124}
void * ADDRESS
Definition: auxiliary.h:119
static int si_min(const int a, const int b)
Definition: auxiliary.h:125
static FORCE_INLINE number n_Copy(number n, const coeffs r)
return a copy of 'n'
Definition: coeffs.h:448
static FORCE_INLINE BOOLEAN nCoeff_is_GF(const coeffs r)
Definition: coeffs.h:836
static FORCE_INLINE nMapFunc n_SetMap(const coeffs src, const coeffs dst)
set the mapping function pointers for translating numbers from src to dst
Definition: coeffs.h:697
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete 'p'
Definition: coeffs.h:452
static FORCE_INLINE void n_Write(number n, const coeffs r, const BOOLEAN bShortOut=TRUE)
Definition: coeffs.h:588
static FORCE_INLINE BOOLEAN nCoeff_is_algExt(const coeffs r)
TRUE iff r represents an algebraic extension field.
Definition: coeffs.h:907
number(* nMapFunc)(number a, const coeffs src, const coeffs dst)
maps "a", which lives in src, into dst
Definition: coeffs.h:73
static FORCE_INLINE BOOLEAN nCoeff_is_transExt(const coeffs r)
TRUE iff r represents a transcendental extension field.
Definition: coeffs.h:915
#define WarnS
Definition: emacs.cc:78
void WerrorS(const char *s)
Definition: feFopen.cc:24
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
Definition: monomials.h:44
The main handler for Singular numbers which are suitable for Singular polynomials.
#define omFreeSize(addr, size)
Definition: omAllocDecl.h:260
#define omAlloc0(size)
Definition: omAllocDecl.h:211
poly p_PermPoly(poly p, const int *perm, const ring oldRing, const ring dst, nMapFunc nMap, const int *par_perm, int OldPar, BOOLEAN use_mult)
Definition: p_polys.cc:4130
poly p_Div_nn(poly p, const number n, const ring r)
Definition: p_polys.cc:1505
void p_Normalize(poly p, const ring r)
Definition: p_polys.cc:3813
static BOOLEAN p_IsConstant(const poly p, const ring r)
Definition: p_polys.h:1962
#define p_Test(p, r)
Definition: p_polys.h:159
void PrintS(const char *s)
Definition: reporter.cc:284
void rWrite(ring r, BOOLEAN details)
Definition: ring.cc:226
static int rPar(const ring r)
(r->cf->P)
Definition: ring.h:599
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:592

◆ p_Add_q() [1/2]

static poly p_Add_q ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 934 of file p_polys.h.

935{
936 assume( (p != q) || (p == NULL && q == NULL) );
937 if (q==NULL) return p;
938 if (p==NULL) return q;
939 int shorter;
940 return r->p_Procs->p_Add_q(p, q, shorter, r);
941}

◆ p_Add_q() [2/2]

static poly p_Add_q ( poly  p,
poly  q,
int &  lp,
int  lq,
const ring  r 
)
inlinestatic

like p_Add_q, except that if lp == pLength(lp) lq == pLength(lq) then lp == pLength(p+q)

Definition at line 944 of file p_polys.h.

945{
946 assume( (p != q) || (p == NULL && q == NULL) );
947 if (q==NULL) return p;
948 if (p==NULL) { lp=lq; return q; }
949 int shorter;
950 poly res = r->p_Procs->p_Add_q(p, q, shorter, r);
951 lp += lq - shorter;
952 return res;
953}

◆ p_AddComp()

static unsigned long p_AddComp ( poly  p,
unsigned long  v,
ring  r 
)
inlinestatic

Definition at line 445 of file p_polys.h.

446{
449 return __p_GetComp(p,r) += v;
450}
const Variable & v
< [in] a sqrfree bivariate poly
Definition: facBivar.h:39
#define p_LmCheckPolyRing2(p, r)
Definition: monomials.h:199
#define pAssume2(cond)
Definition: monomials.h:193
#define __p_GetComp(p, r)
Definition: monomials.h:63
#define rRing_has_Comp(r)
Definition: monomials.h:266

◆ p_AddExp()

static long p_AddExp ( poly  p,
int  v,
long  ee,
ring  r 
)
inlinestatic

Definition at line 604 of file p_polys.h.

605{
607 int e = p_GetExp(p,v,r);
608 e += ee;
609 return p_SetExp(p,v,e,r);
610}
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent @Note: VarOffset encodes the position in p->exp
Definition: p_polys.h:486

◆ p_CheckIsFromRing()

BOOLEAN p_CheckIsFromRing ( poly  p,
ring  r 
)

Definition at line 105 of file pDebug.cc.

106{
107 while (p!=NULL)
108 {
110 pIter(p);
111 }
112 return TRUE;
113}

◆ p_CheckPolyRing()

BOOLEAN p_CheckPolyRing ( poly  p,
ring  r 
)

Definition at line 115 of file pDebug.cc.

116{
117 #ifndef X_OMALLOC
118 pAssumeReturn(r != NULL && r->PolyBin != NULL);
119 #endif
120 return p_CheckIsFromRing(p, r);
121}
#define pAssumeReturn(cond)
Definition: monomials.h:78
BOOLEAN p_CheckIsFromRing(poly p, ring r)
Definition: pDebug.cc:105

◆ p_CheckRing()

BOOLEAN p_CheckRing ( ring  r)

Definition at line 131 of file pDebug.cc.

132{
133 #ifndef X_OMALLOC
134 pAssumeReturn(r != NULL && r->PolyBin != NULL);
135 #endif
136 return TRUE;
137}

◆ p_ChineseRemainder()

poly p_ChineseRemainder ( poly *  xx,
number *  x,
number *  q,
int  rl,
CFArray inv_cache,
const ring  R 
)

Definition at line 88 of file p_polys.cc.

89{
90 poly r,h,hh;
91 int j;
92 poly res_p=NULL;
93 loop
94 {
95 /* search the lead term */
96 r=NULL;
97 for(j=rl-1;j>=0;j--)
98 {
99 h=xx[j];
100 if ((h!=NULL)
101 &&((r==NULL)||(p_LmCmp(r,h,R)==-1)))
102 r=h;
103 }
104 /* nothing found -> return */
105 if (r==NULL) break;
106 /* create the monomial in h */
107 h=p_Head(r,R);
108 /* collect the coeffs in x[..]*/
109 for(j=rl-1;j>=0;j--)
110 {
111 hh=xx[j];
112 if ((hh!=NULL) && (p_LmCmp(h,hh,R)==0))
113 {
114 x[j]=pGetCoeff(hh);
115 hh=p_LmFreeAndNext(hh,R);
116 xx[j]=hh;
117 }
118 else
119 x[j]=n_Init(0, R->cf);
120 }
121 number n=n_ChineseRemainderSym(x,q,rl,TRUE,inv_cache,R->cf);
122 for(j=rl-1;j>=0;j--)
123 {
124 x[j]=NULL; // n_Init(0...) takes no memory
125 }
126 if (n_IsZero(n,R->cf)) p_Delete(&h,R);
127 else
128 {
129 //Print("new mon:");pWrite(h);
130 p_SetCoeff(h,n,R);
131 pNext(h)=res_p;
132 res_p=h; // building res_p in reverse order!
133 }
134 }
135 res_p=pReverse(res_p);
136 p_Test(res_p, R);
137 return res_p;
138}
Variable x
Definition: cfModGcd.cc:4082
static FORCE_INLINE number n_ChineseRemainderSym(number *a, number *b, int rl, BOOLEAN sym, CFArray &inv_cache, const coeffs r)
Definition: coeffs.h:761
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
Definition: coeffs.h:535
int j
Definition: facHensel.cc:110
static number p_SetCoeff(poly p, number n, ring r)
Definition: p_polys.h:410
static poly pReverse(poly p)
Definition: p_polys.h:333
static poly p_Head(const poly p, const ring r)
copy the (leading) term of p
Definition: p_polys.h:858
static poly p_LmFreeAndNext(poly p, ring)
Definition: p_polys.h:709
#define R
Definition: sirandom.c:27
#define loop
Definition: structs.h:75

◆ p_Cleardenom()

poly p_Cleardenom ( poly  p,
const ring  r 
)

Definition at line 2845 of file p_polys.cc.

2846{
2847 if( p == NULL )
2848 return NULL;
2849
2850 assume( r != NULL );
2851 assume( r->cf != NULL );
2852 const coeffs C = r->cf;
2853
2854#if CLEARENUMERATORS
2855 if( 0 )
2856 {
2858 n_ClearDenominators(itr, C);
2859 n_ClearContent(itr, C); // divide out the content
2860 p_Test(p, r); n_Test(pGetCoeff(p), C);
2861 assume(n_GreaterZero(pGetCoeff(p), C)); // ??
2862// if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2863 return p;
2864 }
2865#endif
2866
2867 number d, h;
2868
2869 if (rField_is_Ring(r))
2870 {
2871 if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2872 return p;
2873 }
2874
2876 {
2877 if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2878 return p;
2879 }
2880
2881 assume(p != NULL);
2882
2883 if(pNext(p)==NULL)
2884 {
2885 if (!TEST_OPT_CONTENTSB)
2886 p_SetCoeff(p,n_Init(1,C),r);
2887 else if(!n_GreaterZero(pGetCoeff(p),C))
2888 p = p_Neg(p,r);
2889 return p;
2890 }
2891
2892 assume(pNext(p)!=NULL);
2893 poly start=p;
2894
2895#if 0 && CLEARENUMERATORS
2896//CF: does not seem to work that well..
2897
2898 if( nCoeff_is_Q(C) || nCoeff_is_Q_a(C) )
2899 {
2901 n_ClearDenominators(itr, C);
2902 n_ClearContent(itr, C); // divide out the content
2903 p_Test(p, r); n_Test(pGetCoeff(p), C);
2904 assume(n_GreaterZero(pGetCoeff(p), C)); // ??
2905// if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2906 return start;
2907 }
2908#endif
2909
2910 if(1)
2911 {
2912 // get lcm of all denominators ----------------------------------
2913 h = n_Init(1,C);
2914 while (p!=NULL)
2915 {
2918 n_Delete(&h,C);
2919 h=d;
2920 pIter(p);
2921 }
2922 /* h now contains the 1/lcm of all denominators */
2923 if(!n_IsOne(h,C))
2924 {
2925 // multiply by the lcm of all denominators
2926 p = start;
2927 while (p!=NULL)
2928 {
2929 d=n_Mult(h,pGetCoeff(p),C);
2930 n_Normalize(d,C);
2931 p_SetCoeff(p,d,r);
2932 pIter(p);
2933 }
2934 }
2935 n_Delete(&h,C);
2936 p=start;
2937
2938 p_ContentForGB(p,r);
2939#ifdef HAVE_RATGRING
2940 if (rIsRatGRing(r))
2941 {
2942 /* quick unit detection in the rational case is done in gr_nc_bba */
2943 p_ContentRat(p, r);
2944 start=p;
2945 }
2946#endif
2947 }
2948
2949 if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2950
2951 return start;
2952}
This is a polynomial enumerator for simple iteration over coefficients of polynomials.
static FORCE_INLINE number n_Mult(number a, number b, const coeffs r)
return the product of 'a' and 'b', i.e., a*b
Definition: coeffs.h:633
static FORCE_INLINE number n_NormalizeHelper(number a, number b, const coeffs r)
assume that r is a quotient field (otherwise, return 1) for arguments (a1/a2,b1/b2) return (lcm(a1,...
Definition: coeffs.h:692
static FORCE_INLINE BOOLEAN n_GreaterZero(number n, const coeffs r)
ordered fields: TRUE iff 'n' is positive; in Z/pZ: TRUE iff 0 < m <= roundedBelow(p/2),...
Definition: coeffs.h:491
static FORCE_INLINE BOOLEAN nCoeff_is_Q(const coeffs r)
Definition: coeffs.h:803
static FORCE_INLINE void n_ClearDenominators(ICoeffsEnumerator &numberCollectionEnumerator, number &d, const coeffs r)
(inplace) Clears denominators on a collection of numbers number d is the LCM of all the coefficient d...
Definition: coeffs.h:932
static FORCE_INLINE BOOLEAN nCoeff_is_Q_a(const coeffs r)
Definition: coeffs.h:882
static FORCE_INLINE void n_ClearContent(ICoeffsEnumerator &numberCollectionEnumerator, number &c, const coeffs r)
Computes the content and (inplace) divides it out on a collection of numbers number c is the content ...
Definition: coeffs.h:925
static FORCE_INLINE void n_Normalize(number &n, const coeffs r)
inplace-normalization of n; produces some canonical representation of n;
Definition: coeffs.h:575
static FORCE_INLINE BOOLEAN n_IsOne(number n, const coeffs r)
TRUE iff 'n' represents the one element.
Definition: coeffs.h:465
#define TEST_OPT_INTSTRATEGY
Definition: options.h:111
#define TEST_OPT_CONTENTSB
Definition: options.h:128
void p_ContentRat(poly &ph, const ring r)
Definition: p_polys.cc:1744
void p_ContentForGB(poly ph, const ring r)
Definition: p_polys.cc:2355
static poly p_Neg(poly p, const ring r)
Definition: p_polys.h:1105
static BOOLEAN rIsRatGRing(const ring r)
Definition: ring.h:427
#define rField_is_Ring(R)
Definition: ring.h:485

◆ p_Cleardenom_n()

void p_Cleardenom_n ( poly  p,
const ring  r,
number &  c 
)

Definition at line 2954 of file p_polys.cc.

2955{
2956 const coeffs C = r->cf;
2957 number d, h;
2958
2959 assume( ph != NULL );
2960
2961 poly p = ph;
2962
2963#if CLEARENUMERATORS
2964 if( 0 )
2965 {
2966 CPolyCoeffsEnumerator itr(ph);
2967
2968 n_ClearDenominators(itr, d, C); // multiply with common denom. d
2969 n_ClearContent(itr, h, C); // divide by the content h
2970
2971 c = n_Div(d, h, C); // d/h
2972
2973 n_Delete(&d, C);
2974 n_Delete(&h, C);
2975
2976 n_Test(c, C);
2977
2978 p_Test(ph, r); n_Test(pGetCoeff(ph), C);
2979 assume(n_GreaterZero(pGetCoeff(ph), C)); // ??
2980/*
2981 if(!n_GreaterZero(pGetCoeff(ph),C))
2982 {
2983 ph = p_Neg(ph,r);
2984 c = n_InpNeg(c, C);
2985 }
2986*/
2987 return;
2988 }
2989#endif
2990
2991
2992 if( pNext(p) == NULL )
2993 {
2995 {
2996 c=n_Invers(pGetCoeff(p), C);
2997 p_SetCoeff(p, n_Init(1, C), r);
2998 }
2999 else
3000 {
3001 c=n_Init(1,C);
3002 }
3003
3004 if(!n_GreaterZero(pGetCoeff(ph),C))
3005 {
3006 ph = p_Neg(ph,r);
3007 c = n_InpNeg(c, C);
3008 }
3009
3010 return;
3011 }
3012 if (TEST_OPT_CONTENTSB) { c=n_Init(1,C); return; }
3013
3014 assume( pNext(p) != NULL );
3015
3016#if CLEARENUMERATORS
3017 if( nCoeff_is_Q(C) || nCoeff_is_Q_a(C) )
3018 {
3019 CPolyCoeffsEnumerator itr(ph);
3020
3021 n_ClearDenominators(itr, d, C); // multiply with common denom. d
3022 n_ClearContent(itr, h, C); // divide by the content h
3023
3024 c = n_Div(d, h, C); // d/h
3025
3026 n_Delete(&d, C);
3027 n_Delete(&h, C);
3028
3029 n_Test(c, C);
3030
3031 p_Test(ph, r); n_Test(pGetCoeff(ph), C);
3032 assume(n_GreaterZero(pGetCoeff(ph), C)); // ??
3033/*
3034 if(!n_GreaterZero(pGetCoeff(ph),C))
3035 {
3036 ph = p_Neg(ph,r);
3037 c = n_InpNeg(c, C);
3038 }
3039*/
3040 return;
3041 }
3042#endif
3043
3044
3045
3046
3047 if(1)
3048 {
3049 h = n_Init(1,C);
3050 while (p!=NULL)
3051 {
3054 n_Delete(&h,C);
3055 h=d;
3056 pIter(p);
3057 }
3058 c=h;
3059 /* contains the 1/lcm of all denominators */
3060 if(!n_IsOne(h,C))
3061 {
3062 p = ph;
3063 while (p!=NULL)
3064 {
3065 /* should be: // NOTE: don't use ->coef!!!!
3066 * number hh;
3067 * nGetDenom(p->coef,&hh);
3068 * nMult(&h,&hh,&d);
3069 * nNormalize(d);
3070 * nDelete(&hh);
3071 * nMult(d,p->coef,&hh);
3072 * nDelete(&d);
3073 * nDelete(&(p->coef));
3074 * p->coef =hh;
3075 */
3076 d=n_Mult(h,pGetCoeff(p),C);
3077 n_Normalize(d,C);
3078 p_SetCoeff(p,d,r);
3079 pIter(p);
3080 }
3081 if (rField_is_Q_a(r))
3082 {
3083 loop
3084 {
3085 h = n_Init(1,C);
3086 p=ph;
3087 while (p!=NULL)
3088 {
3090 n_Delete(&h,C);
3091 h=d;
3092 pIter(p);
3093 }
3094 /* contains the 1/lcm of all denominators */
3095 if(!n_IsOne(h,C))
3096 {
3097 p = ph;
3098 while (p!=NULL)
3099 {
3100 /* should be: // NOTE: don't use ->coef!!!!
3101 * number hh;
3102 * nGetDenom(p->coef,&hh);
3103 * nMult(&h,&hh,&d);
3104 * nNormalize(d);
3105 * nDelete(&hh);
3106 * nMult(d,p->coef,&hh);
3107 * nDelete(&d);
3108 * nDelete(&(p->coef));
3109 * p->coef =hh;
3110 */
3111 d=n_Mult(h,pGetCoeff(p),C);
3112 n_Normalize(d,C);
3113 p_SetCoeff(p,d,r);
3114 pIter(p);
3115 }
3116 number t=n_Mult(c,h,C);
3117 n_Delete(&c,C);
3118 c=t;
3119 }
3120 else
3121 {
3122 break;
3123 }
3124 n_Delete(&h,C);
3125 }
3126 }
3127 }
3128 }
3129
3130 if(!n_GreaterZero(pGetCoeff(ph),C))
3131 {
3132 ph = p_Neg(ph,r);
3133 c = n_InpNeg(c, C);
3134 }
3135
3136}
static FORCE_INLINE number n_Invers(number a, const coeffs r)
return the multiplicative inverse of 'a'; raise an error if 'a' is not invertible
Definition: coeffs.h:561
static FORCE_INLINE number n_InpNeg(number n, const coeffs r)
in-place negation of n MUST BE USED: n = n_InpNeg(n) (no copy is returned)
Definition: coeffs.h:554
static FORCE_INLINE number n_Div(number a, number b, const coeffs r)
return the quotient of 'a' and 'b', i.e., a/b; raises an error if 'b' is not invertible in r exceptio...
Definition: coeffs.h:612
static BOOLEAN rField_is_Q_a(const ring r)
Definition: ring.h:539

◆ p_Cmp()

static int p_Cmp ( poly  p1,
poly  p2,
ring  r 
)
inlinestatic

Definition at line 1725 of file p_polys.h.

1726{
1727 if (p2==NULL)
1728 {
1729 if (p1==NULL) return 0;
1730 return 1;
1731 }
1732 if (p1==NULL)
1733 return -1;
1734 return p_LmCmp(p1,p2,r);
1735}

◆ p_CmpPolys()

static int p_CmpPolys ( poly  p1,
poly  p2,
ring  r 
)
inlinestatic

Definition at line 1737 of file p_polys.h.

1738{
1739 if (p2==NULL)
1740 {
1741 if (p1==NULL) return 0;
1742 return 1;
1743 }
1744 if (p1==NULL)
1745 return -1;
1746 return p_ComparePolys(p1,p2,r);
1747}
BOOLEAN p_ComparePolys(poly p1, poly p2, const ring r)
returns TRUE if p1 is a skalar multiple of p2 assume p1 != NULL and p2 != NULL
Definition: p_polys.cc:4576

◆ p_Comp_k_n()

static int p_Comp_k_n ( poly  a,
poly  b,
int  k,
ring  r 
)
inlinestatic

Definition at line 638 of file p_polys.h.

639{
640 if ((a==NULL) || (b==NULL) ) return FALSE;
641 p_LmCheckPolyRing2(a, r);
643 pAssume2(k > 0 && k <= r->N);
644 int i=k;
645 for(;i<=r->N;i++)
646 {
647 if (p_GetExp(a,i,r) != p_GetExp(b,i,r)) return FALSE;
648 // if (a->exp[(r->VarOffset[i] & 0xffffff)] != b->exp[(r->VarOffset[i] & 0xffffff)]) return FALSE;
649 }
650 return TRUE;
651}
const CanonicalForm CFMap CFMap & N
Definition: cfEzgcd.cc:56
int k
Definition: cfEzgcd.cc:99

◆ p_Compare()

int p_Compare ( const poly  a,
const poly  b,
const ring  R 
)

Definition at line 4849 of file p_polys.cc.

4850{
4851 int r=p_Cmp(a,b,R);
4852 if ((r==0)&&(a!=NULL))
4853 {
4854 number h=n_Sub(pGetCoeff(a),pGetCoeff(b),R->cf);
4855 /* compare lead coeffs */
4856 r = -1+n_IsZero(h,R->cf)+2*n_GreaterZero(h,R->cf); /* -1: <, 0:==, 1: > */
4857 n_Delete(&h,R->cf);
4858 }
4859 else if (a==NULL)
4860 {
4861 if (b==NULL)
4862 {
4863 /* compare 0, 0 */
4864 r=0;
4865 }
4866 else if(p_IsConstant(b,R))
4867 {
4868 /* compare 0, const */
4869 r = 1-2*n_GreaterZero(pGetCoeff(b),R->cf); /* -1: <, 1: > */
4870 }
4871 }
4872 else if (b==NULL)
4873 {
4874 if (p_IsConstant(a,R))
4875 {
4876 /* compare const, 0 */
4877 r = -1+2*n_GreaterZero(pGetCoeff(a),R->cf); /* -1: <, 1: > */
4878 }
4879 }
4880 return(r);
4881}
static FORCE_INLINE number n_Sub(number a, number b, const coeffs r)
return the difference of 'a' and 'b', i.e., a-b
Definition: coeffs.h:652
static int p_Cmp(poly p1, poly p2, ring r)
Definition: p_polys.h:1725

◆ p_ComparePolys()

BOOLEAN p_ComparePolys ( poly  p1,
poly  p2,
const ring  r 
)

returns TRUE if p1 is a skalar multiple of p2 assume p1 != NULL and p2 != NULL

Definition at line 4576 of file p_polys.cc.

4577{
4578 number n,nn;
4579 pAssume(p1 != NULL && p2 != NULL);
4580
4581 if (!p_LmEqual(p1,p2,r)) //compare leading mons
4582 return FALSE;
4583 if ((pNext(p1)==NULL) && (pNext(p2)!=NULL))
4584 return FALSE;
4585 if ((pNext(p2)==NULL) && (pNext(p1)!=NULL))
4586 return FALSE;
4587 if (pLength(p1) != pLength(p2))
4588 return FALSE;
4589 #ifdef HAVE_RINGS
4590 if (rField_is_Ring(r))
4591 {
4592 if (!n_DivBy(pGetCoeff(p1), pGetCoeff(p2), r->cf)) return FALSE;
4593 }
4594 #endif
4595 n=n_Div(pGetCoeff(p1),pGetCoeff(p2),r->cf);
4596 while ((p1 != NULL) /*&& (p2 != NULL)*/)
4597 {
4598 if ( ! p_LmEqual(p1, p2,r))
4599 {
4600 n_Delete(&n, r->cf);
4601 return FALSE;
4602 }
4603 if (!n_Equal(pGetCoeff(p1), nn = n_Mult(pGetCoeff(p2),n, r->cf), r->cf))
4604 {
4605 n_Delete(&n, r->cf);
4606 n_Delete(&nn, r->cf);
4607 return FALSE;
4608 }
4609 n_Delete(&nn, r->cf);
4610 pIter(p1);
4611 pIter(p2);
4612 }
4613 n_Delete(&n, r->cf);
4614 return TRUE;
4615}
static FORCE_INLINE BOOLEAN n_DivBy(number a, number b, const coeffs r)
test whether 'a' is divisible 'b'; for r encoding a field: TRUE iff 'b' does not represent zero in Z:...
Definition: coeffs.h:750
static FORCE_INLINE BOOLEAN n_Equal(number a, number b, const coeffs r)
TRUE iff 'a' and 'b' represent the same number; they may have different representations.
Definition: coeffs.h:457
#define pAssume(cond)
Definition: monomials.h:90
#define p_LmEqual(p1, p2, r)
Definition: p_polys.h:1721

◆ p_Content()

void p_Content ( poly  p,
const ring  r 
)

Definition at line 2295 of file p_polys.cc.

2296{
2297 if (ph==NULL) return;
2298 const coeffs cf=r->cf;
2299 if (pNext(ph)==NULL)
2300 {
2301 p_SetCoeff(ph,n_Init(1,cf),r);
2302 return;
2303 }
2304 if ((cf->cfSubringGcd==ndGcd)
2305 || (cf->cfGcd==ndGcd)) /* trivial gcd*/
2306 return;
2307 number h;
2308 if ((rField_is_Q(r))
2309 || (rField_is_Q_a(r))
2310 || (rField_is_Zp_a)(r)
2311 || (rField_is_Z(r))
2312 )
2313 {
2314 h=p_InitContent(ph,r); /* first guess of a gcd of all coeffs */
2315 }
2316 else
2317 {
2318 h=n_Copy(pGetCoeff(ph),cf);
2319 }
2320 poly p;
2321 if(n_IsOne(h,cf))
2322 {
2323 goto content_finish;
2324 }
2325 p=ph;
2326 // take the SubringGcd of all coeffs
2327 while (p!=NULL)
2328 {
2330 number d=n_SubringGcd(h,pGetCoeff(p),cf);
2331 n_Delete(&h,cf);
2332 h = d;
2333 if(n_IsOne(h,cf))
2334 {
2335 goto content_finish;
2336 }
2337 pIter(p);
2338 }
2339 // if found<>1, divide by it
2340 p = ph;
2341 while (p!=NULL)
2342 {
2343 number d = n_ExactDiv(pGetCoeff(p),h,cf);
2344 p_SetCoeff(p,d,r);
2345 pIter(p);
2346 }
2347content_finish:
2348 n_Delete(&h,r->cf);
2349 // and last: check leading sign:
2350 if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2351}
CanonicalForm cf
Definition: cfModGcd.cc:4083
static FORCE_INLINE number n_ExactDiv(number a, number b, const coeffs r)
assume that there is a canonical subring in cf and we know that division is possible for these a and ...
Definition: coeffs.h:619
static FORCE_INLINE number n_SubringGcd(number a, number b, const coeffs r)
Definition: coeffs.h:663
number ndGcd(number, number, const coeffs r)
Definition: numbers.cc:189
number p_InitContent(poly ph, const ring r)
Definition: p_polys.cc:2635
static BOOLEAN rField_is_Zp_a(const ring r)
Definition: ring.h:529

◆ p_ContentForGB()

void p_ContentForGB ( poly  p,
const ring  r 
)

Definition at line 2355 of file p_polys.cc.

2356{
2357 if(TEST_OPT_CONTENTSB) return;
2358 assume( ph != NULL );
2359
2360 assume( r != NULL ); assume( r->cf != NULL );
2361
2362
2363#if CLEARENUMERATORS
2364 if( 0 )
2365 {
2366 const coeffs C = r->cf;
2367 // experimentall (recursive enumerator treatment) of alg. Ext!
2368 CPolyCoeffsEnumerator itr(ph);
2369 n_ClearContent(itr, r->cf);
2370
2371 p_Test(ph, r); n_Test(pGetCoeff(ph), C);
2372 assume(n_GreaterZero(pGetCoeff(ph), C)); // ??
2373
2374 // if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2375 return;
2376 }
2377#endif
2378
2379
2380#ifdef HAVE_RINGS
2381 if (rField_is_Ring(r))
2382 {
2383 if (rField_has_Units(r))
2384 {
2385 number k = n_GetUnit(pGetCoeff(ph),r->cf);
2386 if (!n_IsOne(k,r->cf))
2387 {
2388 number tmpGMP = k;
2389 k = n_Invers(k,r->cf);
2390 n_Delete(&tmpGMP,r->cf);
2391 poly h = pNext(ph);
2392 p_SetCoeff(ph, n_Mult(pGetCoeff(ph), k,r->cf),r);
2393 while (h != NULL)
2394 {
2395 p_SetCoeff(h, n_Mult(pGetCoeff(h), k,r->cf),r);
2396 pIter(h);
2397 }
2398// assume( n_GreaterZero(pGetCoeff(ph),r->cf) );
2399// if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2400 }
2401 n_Delete(&k,r->cf);
2402 }
2403 return;
2404 }
2405#endif
2406 number h,d;
2407 poly p;
2408
2409 if(pNext(ph)==NULL)
2410 {
2411 p_SetCoeff(ph,n_Init(1,r->cf),r);
2412 }
2413 else
2414 {
2415 assume( pNext(ph) != NULL );
2416#if CLEARENUMERATORS
2417 if( nCoeff_is_Q(r->cf) )
2418 {
2419 // experimentall (recursive enumerator treatment) of alg. Ext!
2420 CPolyCoeffsEnumerator itr(ph);
2421 n_ClearContent(itr, r->cf);
2422
2423 p_Test(ph, r); n_Test(pGetCoeff(ph), r->cf);
2424 assume(n_GreaterZero(pGetCoeff(ph), r->cf)); // ??
2425
2426 // if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2427 return;
2428 }
2429#endif
2430
2431 n_Normalize(pGetCoeff(ph),r->cf);
2432 if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2433 if (rField_is_Q(r)||(getCoeffType(r->cf)==n_transExt)) // should not be used anymore if CLEARENUMERATORS is 1
2434 {
2435 h=p_InitContent(ph,r);
2436 p=ph;
2437 }
2438 else
2439 {
2440 h=n_Copy(pGetCoeff(ph),r->cf);
2441 p = pNext(ph);
2442 }
2443 while (p!=NULL)
2444 {
2445 n_Normalize(pGetCoeff(p),r->cf);
2446 d=n_SubringGcd(h,pGetCoeff(p),r->cf);
2447 n_Delete(&h,r->cf);
2448 h = d;
2449 if(n_IsOne(h,r->cf))
2450 {
2451 break;
2452 }
2453 pIter(p);
2454 }
2455 //number tmp;
2456 if(!n_IsOne(h,r->cf))
2457 {
2458 p = ph;
2459 while (p!=NULL)
2460 {
2461 //d = nDiv(pGetCoeff(p),h);
2462 //tmp = nExactDiv(pGetCoeff(p),h);
2463 //if (!nEqual(d,tmp))
2464 //{
2465 // StringSetS("** div0:");nWrite(pGetCoeff(p));StringAppendS("/");
2466 // nWrite(h);StringAppendS("=");nWrite(d);StringAppendS(" int:");
2467 // nWrite(tmp);Print(StringEndS("\n")); // NOTE/TODO: use StringAppendS("\n"); omFree(s);
2468 //}
2469 //nDelete(&tmp);
2470 d = n_ExactDiv(pGetCoeff(p),h,r->cf);
2471 p_SetCoeff(p,d,r);
2472 pIter(p);
2473 }
2474 }
2475 n_Delete(&h,r->cf);
2476 if (rField_is_Q_a(r))
2477 {
2478 // special handling for alg. ext.:
2479 if (getCoeffType(r->cf)==n_algExt)
2480 {
2481 h = n_Init(1, r->cf->extRing->cf);
2482 p=ph;
2483 while (p!=NULL)
2484 { // each monom: coeff in Q_a
2485 poly c_n_n=(poly)pGetCoeff(p);
2486 poly c_n=c_n_n;
2487 while (c_n!=NULL)
2488 { // each monom: coeff in Q
2489 d=n_NormalizeHelper(h,pGetCoeff(c_n),r->cf->extRing->cf);
2490 n_Delete(&h,r->cf->extRing->cf);
2491 h=d;
2492 pIter(c_n);
2493 }
2494 pIter(p);
2495 }
2496 /* h contains the 1/lcm of all denominators in c_n_n*/
2497 //n_Normalize(h,r->cf->extRing->cf);
2498 if(!n_IsOne(h,r->cf->extRing->cf))
2499 {
2500 p=ph;
2501 while (p!=NULL)
2502 { // each monom: coeff in Q_a
2503 poly c_n=(poly)pGetCoeff(p);
2504 while (c_n!=NULL)
2505 { // each monom: coeff in Q
2506 d=n_Mult(h,pGetCoeff(c_n),r->cf->extRing->cf);
2507 n_Normalize(d,r->cf->extRing->cf);
2508 n_Delete(&pGetCoeff(c_n),r->cf->extRing->cf);
2509 pGetCoeff(c_n)=d;
2510 pIter(c_n);
2511 }
2512 pIter(p);
2513 }
2514 }
2515 n_Delete(&h,r->cf->extRing->cf);
2516 }
2517 /*else
2518 {
2519 // special handling for rat. functions.:
2520 number hzz =NULL;
2521 p=ph;
2522 while (p!=NULL)
2523 { // each monom: coeff in Q_a (Z_a)
2524 fraction f=(fraction)pGetCoeff(p);
2525 poly c_n=NUM(f);
2526 if (hzz==NULL)
2527 {
2528 hzz=n_Copy(pGetCoeff(c_n),r->cf->extRing->cf);
2529 pIter(c_n);
2530 }
2531 while ((c_n!=NULL)&&(!n_IsOne(hzz,r->cf->extRing->cf)))
2532 { // each monom: coeff in Q (Z)
2533 d=n_Gcd(hzz,pGetCoeff(c_n),r->cf->extRing->cf);
2534 n_Delete(&hzz,r->cf->extRing->cf);
2535 hzz=d;
2536 pIter(c_n);
2537 }
2538 pIter(p);
2539 }
2540 // hzz contains the gcd of all numerators in f
2541 h=n_Invers(hzz,r->cf->extRing->cf);
2542 n_Delete(&hzz,r->cf->extRing->cf);
2543 n_Normalize(h,r->cf->extRing->cf);
2544 if(!n_IsOne(h,r->cf->extRing->cf))
2545 {
2546 p=ph;
2547 while (p!=NULL)
2548 { // each monom: coeff in Q_a (Z_a)
2549 fraction f=(fraction)pGetCoeff(p);
2550 NUM(f)=__p_Mult_nn(NUM(f),h,r->cf->extRing);
2551 p_Normalize(NUM(f),r->cf->extRing);
2552 pIter(p);
2553 }
2554 }
2555 n_Delete(&h,r->cf->extRing->cf);
2556 }*/
2557 }
2558 }
2559 if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2560}
@ n_algExt
used for all algebraic extensions, i.e., the top-most extension in an extension tower is algebraic
Definition: coeffs.h:35
@ n_transExt
used for all transcendental extensions, i.e., the top-most extension in an extension tower is transce...
Definition: coeffs.h:38
static FORCE_INLINE number n_GetUnit(number n, const coeffs r)
in Z: 1 in Z/kZ (where k is not a prime): largest divisor of n (taken in Z) that is co-prime with k i...
Definition: coeffs.h:529
static FORCE_INLINE n_coeffType getCoeffType(const coeffs r)
Returns the type of coeffs domain.
Definition: coeffs.h:422
static BOOLEAN rField_has_Units(const ring r)
Definition: ring.h:490

◆ p_ContentRat()

void p_ContentRat ( poly &  ph,
const ring  r 
)

Definition at line 1744 of file p_polys.cc.

1747{
1748 // init array of RatLeadCoeffs
1749 // poly p_GetCoeffRat(poly p, int ishift, ring r);
1750
1751 int len=pLength(ph);
1752 poly *C = (poly *)omAlloc0((len+1)*sizeof(poly)); //rat coeffs
1753 poly *LM = (poly *)omAlloc0((len+1)*sizeof(poly)); // rat lead terms
1754 int *D = (int *)omAlloc0((len+1)*sizeof(int)); //degrees of coeffs
1755 int *L = (int *)omAlloc0((len+1)*sizeof(int)); //lengths of coeffs
1756 int k = 0;
1757 poly p = p_Copy(ph, r); // ph will be needed below
1758 int mintdeg = p_Totaldegree(p, r);
1759 int minlen = len;
1760 int dd = 0; int i;
1761 int HasConstantCoef = 0;
1762 int is = r->real_var_start - 1;
1763 while (p!=NULL)
1764 {
1765 LM[k] = p_GetExp_k_n(p,1,is, r); // need LmRat istead of p_HeadRat(p, is, currRing); !
1766 C[k] = p_GetCoeffRat(p, is, r);
1767 D[k] = p_Totaldegree(C[k], r);
1768 mintdeg = si_min(mintdeg,D[k]);
1769 L[k] = pLength(C[k]);
1770 minlen = si_min(minlen,L[k]);
1771 if (p_IsConstant(C[k], r))
1772 {
1773 // C[k] = const, so the content will be numerical
1774 HasConstantCoef = 1;
1775 // smth like goto cleanup and return(pContent(p));
1776 }
1777 p_LmDeleteAndNextRat(&p, is, r);
1778 k++;
1779 }
1780
1781 // look for 1 element of minimal degree and of minimal length
1782 k--;
1783 poly d;
1784 int mindeglen = len;
1785 if (k<=0) // this poly is not a ratgring poly -> pContent
1786 {
1787 p_Delete(&C[0], r);
1788 p_Delete(&LM[0], r);
1789 p_ContentForGB(ph, r);
1790 goto cleanup;
1791 }
1792
1793 int pmindeglen;
1794 for(i=0; i<=k; i++)
1795 {
1796 if (D[i] == mintdeg)
1797 {
1798 if (L[i] < mindeglen)
1799 {
1800 mindeglen=L[i];
1801 pmindeglen = i;
1802 }
1803 }
1804 }
1805 d = p_Copy(C[pmindeglen], r);
1806 // there are dd>=1 mindeg elements
1807 // and pmideglen is the coordinate of one of the smallest among them
1808
1809 // poly g = singclap_gcd(p_Copy(p,r),p_Copy(q,r));
1810 // return naGcd(d,d2,currRing);
1811
1812 // adjoin pContentRat here?
1813 for(i=0; i<=k; i++)
1814 {
1815 d=singclap_gcd(d,p_Copy(C[i], r), r);
1816 if (p_Totaldegree(d, r)==0)
1817 {
1818 // cleanup, pContent, return
1819 p_Delete(&d, r);
1820 for(;k>=0;k--)
1821 {
1822 p_Delete(&C[k], r);
1823 p_Delete(&LM[k], r);
1824 }
1825 p_ContentForGB(ph, r);
1826 goto cleanup;
1827 }
1828 }
1829 for(i=0; i<=k; i++)
1830 {
1831 poly h=singclap_pdivide(C[i],d, r);
1832 p_Delete(&C[i], r);
1833 C[i]=h;
1834 }
1835
1836 // zusammensetzen,
1837 p=NULL; // just to be sure
1838 for(i=0; i<=k; i++)
1839 {
1840 p = p_Add_q(p, p_Mult_q(C[i],LM[i], r), r);
1841 C[i]=NULL; LM[i]=NULL;
1842 }
1843 p_Delete(&ph, r); // do not need it anymore
1844 ph = p;
1845 // aufraeumen, return
1846cleanup:
1847 omFree(C);
1848 omFree(LM);
1849 omFree(D);
1850 omFree(L);
1851}
poly singclap_pdivide(poly f, poly g, const ring r)
Definition: clapsing.cc:624
#define D(A)
Definition: gentable.cc:131
#define omFree(addr)
Definition: omAllocDecl.h:261
void p_LmDeleteAndNextRat(poly *p, int ishift, ring r)
Definition: p_polys.cc:1700
poly p_GetCoeffRat(poly p, int ishift, ring r)
Definition: p_polys.cc:1722
static poly p_Add_q(poly p, poly q, const ring r)
Definition: p_polys.h:934
static poly p_Mult_q(poly p, poly q, const ring r)
Definition: p_polys.h:1112
static poly p_GetExp_k_n(poly p, int l, int k, const ring r)
Definition: p_polys.h:1370
static poly p_Copy(poly p, const ring r)
returns a copy of p
Definition: p_polys.h:844
static long p_Totaldegree(poly p, const ring r)
Definition: p_polys.h:1505
poly singclap_gcd(poly f, poly g, const ring r)
polynomial gcd via singclap_gcd_r resp. idSyzygies destroys f and g
Definition: polys.cc:380

◆ p_Copy() [1/2]

static poly p_Copy ( poly  p,
const ring  lmRing,
const ring  tailRing 
)
inlinestatic

returns a copy of p with Lm(p) from lmRing and Tail(p) from tailRing

Definition at line 881 of file p_polys.h.

882{
883 if (p != NULL)
884 {
885#ifndef PDEBUG
886 if (tailRing == lmRing)
887 return p_Copy_noCheck(p, tailRing);
888#endif
889 poly pres = p_Head(p, lmRing);
890 if (pNext(p)!=NULL)
891 pNext(pres) = p_Copy_noCheck(pNext(p), tailRing);
892 return pres;
893 }
894 else
895 return NULL;
896}
static poly p_Copy_noCheck(poly p, const ring r)
returns a copy of p (without any additional testing)
Definition: p_polys.h:834

◆ p_Copy() [2/2]

static poly p_Copy ( poly  p,
const ring  r 
)
inlinestatic

returns a copy of p

Definition at line 844 of file p_polys.h.

845{
846 if (p!=NULL)
847 {
848 p_Test(p,r);
849 const poly pp = p_Copy_noCheck(p, r);
850 p_Test(pp,r);
851 return pp;
852 }
853 else
854 return NULL;
855}
CanonicalForm FACTORY_PUBLIC pp(const CanonicalForm &)
CanonicalForm pp ( const CanonicalForm & f )
Definition: cf_gcd.cc:676

◆ p_Copy_noCheck()

static poly p_Copy_noCheck ( poly  p,
const ring  r 
)
inlinestatic

returns a copy of p (without any additional testing)

Definition at line 834 of file p_polys.h.

835{
836 /*assume(p!=NULL);*/
837 assume(r != NULL);
838 assume(r->p_Procs != NULL);
839 assume(r->p_Procs->p_Copy != NULL);
840 return r->p_Procs->p_Copy(p, r);
841}

◆ p_CopyPowerProduct()

poly p_CopyPowerProduct ( const poly  p,
const ring  r 
)

like p_Head, but with coefficient 1

Definition at line 4933 of file p_polys.cc.

4934{
4935 if (p == NULL) return NULL;
4936 return p_CopyPowerProduct0(p,n_Init(1,r->cf),r);
4937}
poly p_CopyPowerProduct0(const poly p, number n, const ring r)
like p_Head, but with coefficient n
Definition: p_polys.cc:4921

◆ p_CopyPowerProduct0()

poly p_CopyPowerProduct0 ( const poly  p,
const number  n,
const ring  r 
)

like p_Head, but with coefficient n

Definition at line 4921 of file p_polys.cc.

4922{
4924 poly np;
4925 omTypeAllocBin(poly, np, r->PolyBin);
4926 p_SetRingOfLm(np, r);
4927 memcpy(np->exp, p->exp, r->ExpL_Size*sizeof(long));
4928 pNext(np) = NULL;
4929 pSetCoeff0(np, n);
4930 return np;
4931}
#define p_LmCheckPolyRing1(p, r)
Definition: monomials.h:177
#define pSetCoeff0(p, n)
Definition: monomials.h:59
#define p_SetRingOfLm(p, r)
Definition: monomials.h:144
#define omTypeAllocBin(type, addr, bin)
Definition: omAllocDecl.h:203

◆ p_DecrExp()

static long p_DecrExp ( poly  p,
int  v,
ring  r 
)
inlinestatic

Definition at line 596 of file p_polys.h.

597{
599 int e = p_GetExp(p,v,r);
600 pAssume2(e > 0);
601 e--;
602 return p_SetExp(p,v,e,r);
603}

◆ p_Deg()

long p_Deg ( poly  a,
const ring  r 
)

Definition at line 587 of file p_polys.cc.

588{
589 p_LmCheckPolyRing(a, r);
590// assume(p_GetOrder(a, r) == p_WTotaldegree(a, r)); // WRONG assume!
591 return p_GetOrder(a, r);
592}
BOOLEAN p_LmCheckPolyRing(poly p, ring r)
Definition: pDebug.cc:123
static long p_GetOrder(poly p, ring r)
Definition: p_polys.h:419

◆ p_DegW()

long p_DegW ( poly  p,
const int *  w,
const ring  R 
)

Definition at line 690 of file p_polys.cc.

691{
692 p_Test(p, R);
693 assume( w != NULL );
694 long r=-LONG_MAX;
695
696 while (p!=NULL)
697 {
698 long t=totaldegreeWecart_IV(p,R,w);
699 if (t>r) r=t;
700 pIter(p);
701 }
702 return r;
703}
const CanonicalForm & w
Definition: facAbsFact.cc:51
long totaldegreeWecart_IV(poly p, ring r, const int *w)
Definition: weight.cc:231

◆ p_Delete() [1/2]

static void p_Delete ( poly *  p,
const ring  lmRing,
const ring  tailRing 
)
inlinestatic

Definition at line 906 of file p_polys.h.

907{
908 assume( p!= NULL );
909 if (*p != NULL)
910 {
911#ifndef PDEBUG
912 if (tailRing == lmRing)
913 {
914 p_Delete(p, tailRing);
915 return;
916 }
917#endif
918 if (pNext(*p) != NULL)
919 p_Delete(&pNext(*p), tailRing);
920 p_LmDelete(p, lmRing);
921 }
922}
static void p_LmDelete(poly p, const ring r)
Definition: p_polys.h:721

◆ p_Delete() [2/2]

static void p_Delete ( poly *  p,
const ring  r 
)
inlinestatic

Definition at line 899 of file p_polys.h.

900{
901 assume( p!= NULL );
902 assume( r!= NULL );
903 if ((*p)!=NULL) r->p_Procs->p_Delete(p, r);
904}

◆ p_DeleteComp()

void p_DeleteComp ( poly *  p,
int  k,
const ring  r 
)

Definition at line 3544 of file p_polys.cc.

3545{
3546 poly q;
3547 long unsigned kk=k;
3548
3549 while ((*p!=NULL) && (__p_GetComp(*p,r)==kk)) p_LmDelete(p,r);
3550 if (*p==NULL) return;
3551 q = *p;
3552 if (__p_GetComp(q,r)>kk)
3553 {
3554 p_SubComp(q,1,r);
3555 p_SetmComp(q,r);
3556 }
3557 while (pNext(q)!=NULL)
3558 {
3559 if (__p_GetComp(pNext(q),r)==kk)
3560 p_LmDelete(&(pNext(q)),r);
3561 else
3562 {
3563 pIter(q);
3564 if (__p_GetComp(q,r)>kk)
3565 {
3566 p_SubComp(q,1,r);
3567 p_SetmComp(q,r);
3568 }
3569 }
3570 }
3571}
static unsigned long p_SubComp(poly p, unsigned long v, ring r)
Definition: p_polys.h:451
#define p_SetmComp
Definition: p_polys.h:242

◆ p_Diff()

poly p_Diff ( poly  a,
int  k,
const ring  r 
)

Definition at line 1898 of file p_polys.cc.

1899{
1900 poly res, f, last;
1901 number t;
1902
1903 last = res = NULL;
1904 while (a!=NULL)
1905 {
1906 if (p_GetExp(a,k,r)!=0)
1907 {
1908 f = p_LmInit(a,r);
1909 t = n_Init(p_GetExp(a,k,r),r->cf);
1910 pSetCoeff0(f,n_Mult(t,pGetCoeff(a),r->cf));
1911 n_Delete(&t,r->cf);
1912 if (n_IsZero(pGetCoeff(f),r->cf))
1913 p_LmDelete(&f,r);
1914 else
1915 {
1916 p_DecrExp(f,k,r);
1917 p_Setm(f,r);
1918 if (res==NULL)
1919 {
1920 res=last=f;
1921 }
1922 else
1923 {
1924 pNext(last)=f;
1925 last=f;
1926 }
1927 }
1928 }
1929 pIter(a);
1930 }
1931 return res;
1932}
FILE * f
Definition: checklibs.c:9
STATIC_VAR poly last
Definition: hdegree.cc:1173
static poly p_LmInit(poly p, const ring r)
Definition: p_polys.h:1333
static void p_Setm(poly p, const ring r)
Definition: p_polys.h:231
static long p_DecrExp(poly p, int v, ring r)
Definition: p_polys.h:596

◆ p_DiffOp()

poly p_DiffOp ( poly  a,
poly  b,
BOOLEAN  multiply,
const ring  r 
)

Definition at line 1973 of file p_polys.cc.

1974{
1975 poly result=NULL;
1976 poly h;
1977 for(;a!=NULL;pIter(a))
1978 {
1979 for(h=b;h!=NULL;pIter(h))
1980 {
1981 result=p_Add_q(result,p_DiffOpM(a,h,multiply,r),r);
1982 }
1983 }
1984 return result;
1985}
return result
Definition: facAbsBiFact.cc:75
static poly p_DiffOpM(poly a, poly b, BOOLEAN multiply, const ring r)
Definition: p_polys.cc:1934

◆ p_Div_mm()

poly p_Div_mm ( poly  p,
const poly  m,
const ring  r 
)

divide polynomial by monomial

Definition at line 1538 of file p_polys.cc.

1539{
1540 p_Test(p, r);
1541 p_Test(m, r);
1542 poly result = p;
1543 poly prev = NULL;
1544 number n=pGetCoeff(m);
1545 while (p!=NULL)
1546 {
1547 number nc = n_Div(pGetCoeff(p),n,r->cf);
1548 n_Normalize(nc,r->cf);
1549 if (!n_IsZero(nc,r->cf))
1550 {
1551 p_SetCoeff(p,nc,r);
1552 prev=p;
1553 p_ExpVectorSub(p,m,r);
1554 pIter(p);
1555 }
1556 else
1557 {
1558 if (prev==NULL)
1559 {
1560 p_LmDelete(&result,r);
1561 p=result;
1562 }
1563 else
1564 {
1565 p_LmDelete(&pNext(prev),r);
1566 p=pNext(prev);
1567 }
1568 }
1569 }
1570 p_Test(result,r);
1571 return(result);
1572}
int m
Definition: cfEzgcd.cc:128
static void p_ExpVectorSub(poly p1, poly p2, const ring r)
Definition: p_polys.h:1438

◆ p_Div_nn()

poly p_Div_nn ( poly  p,
const number  n,
const ring  r 
)

Definition at line 1505 of file p_polys.cc.

1506{
1507 pAssume(!n_IsZero(n,r->cf));
1508 p_Test(p, r);
1509 poly result = p;
1510 poly prev = NULL;
1511 while (p!=NULL)
1512 {
1513 number nc = n_Div(pGetCoeff(p),n,r->cf);
1514 if (!n_IsZero(nc,r->cf))
1515 {
1516 p_SetCoeff(p,nc,r);
1517 prev=p;
1518 pIter(p);
1519 }
1520 else
1521 {
1522 if (prev==NULL)
1523 {
1524 p_LmDelete(&result,r);
1525 p=result;
1526 }
1527 else
1528 {
1529 p_LmDelete(&pNext(prev),r);
1530 p=pNext(prev);
1531 }
1532 }
1533 }
1534 p_Test(result,r);
1535 return(result);
1536}

◆ p_DivideM()

poly p_DivideM ( poly  a,
poly  b,
const ring  r 
)

Definition at line 1578 of file p_polys.cc.

1579{
1580 if (a==NULL) { p_Delete(&b,r); return NULL; }
1581 poly result=a;
1582
1583 if(!p_IsConstant(b,r))
1584 {
1585 if (rIsNCRing(r))
1586 {
1587 WerrorS("p_DivideM not implemented for non-commuative rings");
1588 return NULL;
1589 }
1590 poly prev=NULL;
1591 while (a!=NULL)
1592 {
1593 if (p_DivisibleBy(b,a,r))
1594 {
1595 p_ExpVectorSub(a,b,r);
1596 prev=a;
1597 pIter(a);
1598 }
1599 else
1600 {
1601 if (prev==NULL)
1602 {
1603 p_LmDelete(&result,r);
1604 a=result;
1605 }
1606 else
1607 {
1608 p_LmDelete(&pNext(prev),r);
1609 a=pNext(prev);
1610 }
1611 }
1612 }
1613 }
1614 if (result!=NULL)
1615 {
1616 number inv=pGetCoeff(b);
1617 //if ((!rField_is_Ring(r)) || n_IsUnit(inv,r->cf))
1618 if (rField_is_Zp(r))
1619 {
1620 inv = n_Invers(inv,r->cf);
1621 __p_Mult_nn(result,inv,r);
1622 n_Delete(&inv, r->cf);
1623 }
1624 else
1625 {
1626 result = p_Div_nn(result,inv,r);
1627 }
1628 }
1629 p_Delete(&b, r);
1630 return result;
1631}
static BOOLEAN p_DivisibleBy(poly a, poly b, const ring r)
Definition: p_polys.h:1898
#define __p_Mult_nn(p, n, r)
Definition: p_polys.h:969
static BOOLEAN rIsNCRing(const ring r)
Definition: ring.h:421

◆ p_DivisibleBy()

static BOOLEAN p_DivisibleBy ( poly  a,
poly  b,
const ring  r 
)
inlinestatic

Definition at line 1898 of file p_polys.h.

1899{
1901 pIfThen1(a!=NULL, p_LmCheckPolyRing1(a, r));
1902
1903 if (a != NULL && (p_GetComp(a, r) == 0 || p_GetComp(a,r) == p_GetComp(b,r)))
1904 return _p_LmDivisibleByNoComp(a,b,r);
1905 return FALSE;
1906}
#define pIfThen1(cond, check)
Definition: monomials.h:179

◆ p_DivisibleByRingCase()

BOOLEAN p_DivisibleByRingCase ( poly  f,
poly  g,
const ring  r 
)

divisibility check over ground ring (which may contain zero divisors); TRUE iff LT(f) divides LT(g), i.e., LT(f)*c*m = LT(g), for some coefficient c and some monomial m; does not take components into account

Definition at line 1642 of file p_polys.cc.

1643{
1644 int exponent;
1645 for(int i = (int)rVar(r); i>0; i--)
1646 {
1647 exponent = p_GetExp(g, i, r) - p_GetExp(f, i, r);
1648 if (exponent < 0) return FALSE;
1649 }
1650 return n_DivBy(pGetCoeff(g), pGetCoeff(f), r->cf);
1651}
g
Definition: cfModGcd.cc:4090
#define exponent

◆ p_EqualPolys() [1/2]

BOOLEAN p_EqualPolys ( poly  p1,
poly  p2,
const ring  r 
)

Definition at line 4512 of file p_polys.cc.

4513{
4514 while ((p1 != NULL) && (p2 != NULL))
4515 {
4516 if (! p_LmEqual(p1, p2,r))
4517 return FALSE;
4518 if (! n_Equal(p_GetCoeff(p1,r), p_GetCoeff(p2,r),r->cf ))
4519 return FALSE;
4520 pIter(p1);
4521 pIter(p2);
4522 }
4523 return (p1==p2);
4524}
#define p_GetCoeff(p, r)
Definition: monomials.h:50

◆ p_EqualPolys() [2/2]

BOOLEAN p_EqualPolys ( poly  p1,
poly  p2,
const ring  r1,
const ring  r2 
)

same as the usual p_EqualPolys for polys belonging to equal rings

Definition at line 4550 of file p_polys.cc.

4551{
4552 assume( r1 == r2 || rSamePolyRep(r1, r2) ); // will be used in rEqual!
4553 assume( r1->cf == r2->cf );
4554
4555 while ((p1 != NULL) && (p2 != NULL))
4556 {
4557 // returns 1 if ExpVector(p)==ExpVector(q): does not compare numbers !!
4558 // #define p_LmEqual(p1, p2, r) p_ExpVectorEqual(p1, p2, r)
4559
4560 if (! p_ExpVectorEqual(p1, p2, r1, r2))
4561 return FALSE;
4562
4563 if (! n_Equal(p_GetCoeff(p1,r1), p_GetCoeff(p2,r2), r1->cf ))
4564 return FALSE;
4565
4566 pIter(p1);
4567 pIter(p2);
4568 }
4569 return (p1==p2);
4570}
BOOLEAN rSamePolyRep(ring r1, ring r2)
returns TRUE, if r1 and r2 represents the monomials in the same way FALSE, otherwise this is an analo...
Definition: ring.cc:1799

◆ p_ExpVectorAdd()

static void p_ExpVectorAdd ( poly  p1,
poly  p2,
const ring  r 
)
inlinestatic

Definition at line 1409 of file p_polys.h.

1410{
1411 p_LmCheckPolyRing1(p1, r);
1412 p_LmCheckPolyRing1(p2, r);
1413#if PDEBUG >= 1
1414 for (int i=1; i<=r->N; i++)
1415 pAssume1((unsigned long) (p_GetExp(p1, i, r) + p_GetExp(p2, i, r)) <= r->bitmask);
1416 pAssume1(p_GetComp(p1, r) == 0 || p_GetComp(p2, r) == 0);
1417#endif
1418
1419 p_MemAdd_LengthGeneral(p1->exp, p2->exp, r->ExpL_Size);
1421}
#define p_MemAdd_LengthGeneral(r, s, length)
Definition: p_MemAdd.h:173
static void p_MemAdd_NegWeightAdjust(poly p, const ring r)
Definition: p_polys.h:1290

◆ p_ExpVectorAddSub()

static void p_ExpVectorAddSub ( poly  p1,
poly  p2,
poly  p3,
const ring  r 
)
inlinestatic

Definition at line 1454 of file p_polys.h.

1455{
1456 p_LmCheckPolyRing1(p1, r);
1457 p_LmCheckPolyRing1(p2, r);
1458 p_LmCheckPolyRing1(p3, r);
1459#if PDEBUG >= 1
1460 for (int i=1; i<=r->N; i++)
1461 pAssume1(p_GetExp(p1, i, r) + p_GetExp(p2, i, r) >= p_GetExp(p3, i, r));
1462 pAssume1(p_GetComp(p1, r) == 0 ||
1463 (p_GetComp(p2, r) - p_GetComp(p3, r) == 0) ||
1464 (p_GetComp(p1, r) == p_GetComp(p2, r) - p_GetComp(p3, r)));
1465#endif
1466
1467 p_MemAddSub_LengthGeneral(p1->exp, p2->exp, p3->exp, r->ExpL_Size);
1468 // no need to adjust in case of NegWeights
1469}
#define p_MemAddSub_LengthGeneral(r, s, t, length)
Definition: p_MemAdd.h:312

◆ p_ExpVectorCopy()

static void p_ExpVectorCopy ( poly  d_p,
poly  s_p,
const ring  r 
)
inlinestatic

Definition at line 1311 of file p_polys.h.

1312{
1313 p_LmCheckPolyRing1(d_p, r);
1314 p_LmCheckPolyRing1(s_p, r);
1315 memcpy(d_p->exp, s_p->exp, r->ExpL_Size*sizeof(long));
1316}

◆ p_ExpVectorDiff()

static void p_ExpVectorDiff ( poly  pr,
poly  p1,
poly  p2,
const ring  r 
)
inlinestatic

Definition at line 1472 of file p_polys.h.

1473{
1474 p_LmCheckPolyRing1(p1, r);
1475 p_LmCheckPolyRing1(p2, r);
1476 p_LmCheckPolyRing1(pr, r);
1477#if PDEBUG >= 2
1478 for (int i=1; i<=r->N; i++)
1479 pAssume1(p_GetExp(p1, i, r) >= p_GetExp(p2, i, r));
1480 pAssume1(!rRing_has_Comp(r) || p_GetComp(p1, r) == p_GetComp(p2, r));
1481#endif
1482
1483 p_MemDiff_LengthGeneral(pr->exp, p1->exp, p2->exp, r->ExpL_Size);
1485}
#define p_MemDiff_LengthGeneral(r, s1, s2, length)
Definition: p_MemAdd.h:262
static void p_MemSub_NegWeightAdjust(poly p, const ring r)
Definition: p_polys.h:1300

◆ p_ExpVectorEqual()

static BOOLEAN p_ExpVectorEqual ( poly  p1,
poly  p2,
const ring  r 
)
inlinestatic

Definition at line 1487 of file p_polys.h.

1488{
1489 p_LmCheckPolyRing1(p1, r);
1490 p_LmCheckPolyRing1(p2, r);
1491
1492 unsigned i = r->ExpL_Size;
1493 unsigned long *ep = p1->exp;
1494 unsigned long *eq = p2->exp;
1495
1496 do
1497 {
1498 i--;
1499 if (ep[i] != eq[i]) return FALSE;
1500 }
1501 while (i!=0);
1502 return TRUE;
1503}

◆ p_ExpVectorSub()

static void p_ExpVectorSub ( poly  p1,
poly  p2,
const ring  r 
)
inlinestatic

Definition at line 1438 of file p_polys.h.

1439{
1440 p_LmCheckPolyRing1(p1, r);
1441 p_LmCheckPolyRing1(p2, r);
1442#if PDEBUG >= 1
1443 for (int i=1; i<=r->N; i++)
1444 pAssume1(p_GetExp(p1, i, r) >= p_GetExp(p2, i, r));
1445 pAssume1(p_GetComp(p1, r) == 0 || p_GetComp(p2, r) == 0 ||
1446 p_GetComp(p1, r) == p_GetComp(p2, r));
1447#endif
1448
1449 p_MemSub_LengthGeneral(p1->exp, p2->exp, r->ExpL_Size);
1451}
#define p_MemSub_LengthGeneral(r, s, length)
Definition: p_MemAdd.h:291

◆ p_ExpVectorSum()

static void p_ExpVectorSum ( poly  pr,
poly  p1,
poly  p2,
const ring  r 
)
inlinestatic

Definition at line 1423 of file p_polys.h.

1424{
1425 p_LmCheckPolyRing1(p1, r);
1426 p_LmCheckPolyRing1(p2, r);
1427 p_LmCheckPolyRing1(pr, r);
1428#if PDEBUG >= 1
1429 for (int i=1; i<=r->N; i++)
1430 pAssume1((unsigned long) (p_GetExp(p1, i, r) + p_GetExp(p2, i, r)) <= r->bitmask);
1431 pAssume1(p_GetComp(p1, r) == 0 || p_GetComp(p2, r) == 0);
1432#endif
1433
1434 p_MemSum_LengthGeneral(pr->exp, p1->exp, p2->exp, r->ExpL_Size);
1436}
#define p_MemSum_LengthGeneral(r, s1, s2, length)
Definition: p_MemAdd.h:86

◆ p_Farey()

poly p_Farey ( poly  p,
number  N,
const ring  r 
)

Definition at line 54 of file p_polys.cc.

55{
56 poly h=p_Copy(p,r);
57 poly hh=h;
58 while(h!=NULL)
59 {
60 number c=pGetCoeff(h);
61 pSetCoeff0(h,n_Farey(c,N,r->cf));
62 n_Delete(&c,r->cf);
63 pIter(h);
64 }
65 while((hh!=NULL)&&(n_IsZero(pGetCoeff(hh),r->cf)))
66 {
67 p_LmDelete(&hh,r);
68 }
69 h=hh;
70 while((h!=NULL) && (pNext(h)!=NULL))
71 {
72 if(n_IsZero(pGetCoeff(pNext(h)),r->cf))
73 {
74 p_LmDelete(&pNext(h),r);
75 }
76 else pIter(h);
77 }
78 return hh;
79}
static FORCE_INLINE number n_Farey(number a, number b, const coeffs r)
Definition: coeffs.h:764

◆ p_FDeg()

static long p_FDeg ( const poly  p,
const ring  r 
)
inlinestatic

Definition at line 378 of file p_polys.h.

378{ return r->pFDeg(p,r); }

◆ p_GcdMon()

poly p_GcdMon ( poly  f,
poly  g,
const ring  r 
)

polynomial gcd for f=mon

Definition at line 4883 of file p_polys.cc.

4884{
4885 assume(f!=NULL);
4886 assume(g!=NULL);
4887 assume(pNext(f)==NULL);
4888 poly G=p_Head(f,r);
4889 poly h=g;
4890 int *mf=(int*)omAlloc((r->N+1)*sizeof(int));
4891 p_GetExpV(f,mf,r);
4892 int *mh=(int*)omAlloc((r->N+1)*sizeof(int));
4893 BOOLEAN const_mon;
4894 BOOLEAN one_coeff=n_IsOne(pGetCoeff(G),r->cf);
4895 loop
4896 {
4897 if (h==NULL) break;
4898 if(!one_coeff)
4899 {
4900 number n=n_SubringGcd(pGetCoeff(G),pGetCoeff(h),r->cf);
4901 one_coeff=n_IsOne(n,r->cf);
4902 p_SetCoeff(G,n,r);
4903 }
4904 p_GetExpV(h,mh,r);
4905 const_mon=TRUE;
4906 for(unsigned j=r->N;j!=0;j--)
4907 {
4908 if (mh[j]<mf[j]) mf[j]=mh[j];
4909 if (mf[j]>0) const_mon=FALSE;
4910 }
4911 if (one_coeff && const_mon) break;
4912 pIter(h);
4913 }
4914 mf[0]=0;
4915 p_SetExpV(G,mf,r); // included is p_SetComp, p_Setm
4916 omFreeSize(mf,(r->N+1)*sizeof(int));
4917 omFreeSize(mh,(r->N+1)*sizeof(int));
4918 return G;
4919}
STATIC_VAR TreeM * G
Definition: janet.cc:31
#define omAlloc(size)
Definition: omAllocDecl.h:210
static void p_SetExpV(poly p, int *ev, const ring r)
Definition: p_polys.h:1542
static void p_GetExpV(poly p, int *ev, const ring r)
Definition: p_polys.h:1518

◆ p_GetCoeffRat()

poly p_GetCoeffRat ( poly  p,
int  ishift,
ring  r 
)

Definition at line 1722 of file p_polys.cc.

1723{
1724 poly q = pNext(p);
1725 poly res; // = p_Head(p,r);
1726 res = p_GetExp_k_n(p, ishift+1, r->N, r); // does pSetm internally
1727 p_SetCoeff(res,n_Copy(p_GetCoeff(p,r),r),r);
1728 poly s;
1729 long cmp = p_GetComp(p, r);
1730 while ( (q!= NULL) && (p_Comp_k_n(p, q, ishift+1, r)) && (p_GetComp(q, r) == cmp) )
1731 {
1732 s = p_GetExp_k_n(q, ishift+1, r->N, r);
1733 p_SetCoeff(s,n_Copy(p_GetCoeff(q,r),r),r);
1734 res = p_Add_q(res,s,r);
1735 q = pNext(q);
1736 }
1737 cmp = 0;
1738 p_SetCompP(res,cmp,r);
1739 return res;
1740}
const CanonicalForm int s
Definition: facAbsFact.cc:51
static int p_Comp_k_n(poly a, poly b, int k, ring r)
Definition: p_polys.h:638
static void p_SetCompP(poly p, int i, ring r)
Definition: p_polys.h:252

◆ p_GetExp() [1/3]

static long p_GetExp ( const poly  p,
const int  v,
const ring  r 
)
inlinestatic

get v^th exponent for a monomial

Definition at line 570 of file p_polys.h.

571{
573 pAssume2(v>0 && v <= r->N);
574 pAssume2(r->VarOffset[v] != -1);
575 return p_GetExp(p, r->bitmask, r->VarOffset[v]);
576}

◆ p_GetExp() [2/3]

static long p_GetExp ( const poly  p,
const ring  r,
const int  VarOffset 
)
inlinestatic

Definition at line 553 of file p_polys.h.

554{
556 pAssume2(VarOffset != -1);
557 return p_GetExp(p, r->bitmask, VarOffset);
558}

◆ p_GetExp() [3/3]

static long p_GetExp ( const poly  p,
const unsigned long  iBitmask,
const int  VarOffset 
)
inlinestatic

get a single variable exponent @Note: the integer VarOffset encodes:

  1. the position of a variable in the exponent vector p->exp (lower 24 bits)
  2. number of bits to shift to the right in the upper 8 bits (which takes at most 6 bits for 64 bit) Thus VarOffset always has 2 zero higher bits!

Definition at line 467 of file p_polys.h.

468{
469 pAssume2((VarOffset >> (24 + 6)) == 0);
470#if 0
471 int pos=(VarOffset & 0xffffff);
472 int bitpos=(VarOffset >> 24);
473 unsigned long exp=(p->exp[pos] >> bitmask) & iBitmask;
474 return exp;
475#else
476 return (long)
477 ((p->exp[(VarOffset & 0xffffff)] >> (VarOffset >> 24))
478 & iBitmask);
479#endif
480}
gmp_float exp(const gmp_float &a)
Definition: mpr_complex.cc:357

◆ p_GetExp_k_n()

static poly p_GetExp_k_n ( poly  p,
int  l,
int  k,
const ring  r 
)
inlinestatic

Definition at line 1370 of file p_polys.h.

1371{
1372 if (p == NULL) return NULL;
1374 poly np;
1375 omTypeAllocBin(poly, np, r->PolyBin);
1376 p_SetRingOfLm(np, r);
1377 memcpy(np->exp, p->exp, r->ExpL_Size*sizeof(long));
1378 pNext(np) = NULL;
1379 pSetCoeff0(np, n_Init(1, r->cf));
1380 int i;
1381 for(i=l;i<=k;i++)
1382 {
1383 //np->exp[(r->VarOffset[i] & 0xffffff)] =0;
1384 p_SetExp(np,i,0,r);
1385 }
1386 p_Setm(np,r);
1387 return np;
1388}

◆ p_GetExpDiff()

static long p_GetExpDiff ( poly  p1,
poly  p2,
int  i,
ring  r 
)
inlinestatic

Definition at line 633 of file p_polys.h.

634{
635 return p_GetExp(p1,i,r) - p_GetExp(p2,i,r);
636}

◆ p_GetExpSum()

static long p_GetExpSum ( poly  p1,
poly  p2,
int  i,
ring  r 
)
inlinestatic

Definition at line 627 of file p_polys.h.

628{
629 p_LmCheckPolyRing2(p1, r);
630 p_LmCheckPolyRing2(p2, r);
631 return p_GetExp(p1,i,r) + p_GetExp(p2,i,r);
632}

◆ p_GetExpV()

static void p_GetExpV ( poly  p,
int *  ev,
const ring  r 
)
inlinestatic

Definition at line 1518 of file p_polys.h.

1519{
1521 for (unsigned j = r->N; j!=0; j--)
1522 ev[j] = p_GetExp(p, j, r);
1523
1524 ev[0] = p_GetComp(p, r);
1525}

◆ p_GetExpVL()

static void p_GetExpVL ( poly  p,
int64 ev,
const ring  r 
)
inlinestatic

Definition at line 1527 of file p_polys.h.

1528{
1530 for (unsigned j = r->N; j!=0; j--)
1531 ev[j-1] = p_GetExp(p, j, r);
1532}

◆ p_GetExpVLV()

static int64 p_GetExpVLV ( poly  p,
int64 ev,
const ring  r 
)
inlinestatic

Definition at line 1534 of file p_polys.h.

1535{
1537 for (unsigned j = r->N; j!=0; j--)
1538 ev[j-1] = p_GetExp(p, j, r);
1539 return (int64)p_GetComp(p,r);
1540}
long int64
Definition: auxiliary.h:68

◆ p_GetMaxExp() [1/2]

static unsigned long p_GetMaxExp ( const poly  p,
const ring  r 
)
inlinestatic

Definition at line 802 of file p_polys.h.

803{
804 return p_GetMaxExp(p_GetMaxExpL(p, r), r);
805}
static unsigned long p_GetMaxExp(const unsigned long l, const ring r)
Definition: p_polys.h:779
unsigned long p_GetMaxExpL(poly p, const ring r, unsigned long l_max=0)
return the maximal exponent of p in form of the maximal long var
Definition: p_polys.cc:1175

◆ p_GetMaxExp() [2/2]

static unsigned long p_GetMaxExp ( const unsigned long  l,
const ring  r 
)
inlinestatic

Definition at line 779 of file p_polys.h.

780{
781 unsigned long bitmask = r->bitmask;
782 unsigned long max = (l & bitmask);
783 unsigned long j = r->ExpPerLong - 1;
784
785 if (j > 0)
786 {
787 unsigned long i = r->BitsPerExp;
788 long e;
789 loop
790 {
791 e = ((l >> i) & bitmask);
792 if ((unsigned long) e > max)
793 max = e;
794 j--;
795 if (j==0) break;
796 i += r->BitsPerExp;
797 }
798 }
799 return max;
800}
static int max(int a, int b)
Definition: fast_mult.cc:264

◆ p_GetMaxExpL()

unsigned long p_GetMaxExpL ( poly  p,
const ring  r,
unsigned long  l_max = 0 
)

return the maximal exponent of p in form of the maximal long var

Definition at line 1175 of file p_polys.cc.

1176{
1177 unsigned long l_p, divmask = r->divmask;
1178 int i;
1179
1180 while (p != NULL)
1181 {
1182 l_p = p->exp[r->VarL_Offset[0]];
1183 if (l_p > l_max ||
1184 (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask)))
1185 l_max = p_GetMaxExpL2(l_max, l_p, r);
1186 for (i=1; i<r->VarL_Size; i++)
1187 {
1188 l_p = p->exp[r->VarL_Offset[i]];
1189 // do the divisibility trick to find out whether l has an exponent
1190 if (l_p > l_max ||
1191 (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask)))
1192 l_max = p_GetMaxExpL2(l_max, l_p, r);
1193 }
1194 pIter(p);
1195 }
1196 return l_max;
1197}
static unsigned long p_GetMaxExpL2(unsigned long l1, unsigned long l2, const ring r, unsigned long number_of_exp)
Definition: p_polys.cc:1107

◆ p_GetMaxExpP()

poly p_GetMaxExpP ( poly  p,
ring  r 
)

return monomial r such that GetExp(r,i) is maximum of all monomials in p; coeff == 0, next == NULL, ord is not set

Definition at line 1138 of file p_polys.cc.

1139{
1140 p_CheckPolyRing(p, r);
1141 if (p == NULL) return p_Init(r);
1142 poly max = p_LmInit(p, r);
1143 pIter(p);
1144 if (p == NULL) return max;
1145 int i, offset;
1146 unsigned long l_p, l_max;
1147 unsigned long divmask = r->divmask;
1148
1149 do
1150 {
1151 offset = r->VarL_Offset[0];
1152 l_p = p->exp[offset];
1153 l_max = max->exp[offset];
1154 // do the divisibility trick to find out whether l has an exponent
1155 if (l_p > l_max ||
1156 (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask)))
1157 max->exp[offset] = p_GetMaxExpL2(l_max, l_p, r);
1158
1159 for (i=1; i<r->VarL_Size; i++)
1160 {
1161 offset = r->VarL_Offset[i];
1162 l_p = p->exp[offset];
1163 l_max = max->exp[offset];
1164 // do the divisibility trick to find out whether l has an exponent
1165 if (l_p > l_max ||
1166 (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask)))
1167 max->exp[offset] = p_GetMaxExpL2(l_max, l_p, r);
1168 }
1169 pIter(p);
1170 }
1171 while (p != NULL);
1172 return max;
1173}
STATIC_VAR int offset
Definition: janet.cc:29
BOOLEAN p_CheckPolyRing(poly p, ring r)
Definition: pDebug.cc:115
static poly p_Init(const ring r, omBin bin)
Definition: p_polys.h:1318

◆ p_GetOrder()

static long p_GetOrder ( poly  p,
ring  r 
)
inlinestatic

Definition at line 419 of file p_polys.h.

420{
422 if (r->typ==NULL) return ((p)->exp[r->pOrdIndex]);
423 int i=0;
424 loop
425 {
426 switch(r->typ[i].ord_typ)
427 {
428 case ro_am:
429 case ro_wp_neg:
430 return ((p->exp[r->pOrdIndex])-POLY_NEGWEIGHT_OFFSET);
431 case ro_syzcomp:
432 case ro_syz:
433 case ro_cp:
434 i++;
435 break;
436 //case ro_dp:
437 //case ro_wp:
438 default:
439 return ((p)->exp[r->pOrdIndex]);
440 }
441 }
442}
#define POLY_NEGWEIGHT_OFFSET
Definition: monomials.h:236
@ ro_syz
Definition: ring.h:60
@ ro_cp
Definition: ring.h:58
@ ro_wp_neg
Definition: ring.h:56
@ ro_am
Definition: ring.h:54

◆ p_GetSetmProc()

p_SetmProc p_GetSetmProc ( const ring  r)

Definition at line 560 of file p_polys.cc.

561{
562 // covers lp, rp, ls,
563 if (r->typ == NULL) return p_Setm_Dummy;
564
565 if (r->OrdSize == 1)
566 {
567 if (r->typ[0].ord_typ == ro_dp &&
568 r->typ[0].data.dp.start == 1 &&
569 r->typ[0].data.dp.end == r->N &&
570 r->typ[0].data.dp.place == r->pOrdIndex)
571 return p_Setm_TotalDegree;
572 if (r->typ[0].ord_typ == ro_wp &&
573 r->typ[0].data.wp.start == 1 &&
574 r->typ[0].data.wp.end == r->N &&
575 r->typ[0].data.wp.place == r->pOrdIndex &&
576 r->typ[0].data.wp.weights == r->firstwv)
578 }
579 return p_Setm_General;
580}
void p_Setm_WFirstTotalDegree(poly p, const ring r)
Definition: p_polys.cc:554
void p_Setm_Dummy(poly p, const ring r)
Definition: p_polys.cc:541
void p_Setm_TotalDegree(poly p, const ring r)
Definition: p_polys.cc:547
void p_Setm_General(poly p, const ring r)
Definition: p_polys.cc:158
@ ro_dp
Definition: ring.h:52
@ ro_wp
Definition: ring.h:53

◆ p_GetShortExpVector()

unsigned long p_GetShortExpVector ( const poly  a,
const ring  r 
)

Definition at line 4780 of file p_polys.cc.

4781{
4782 assume(p != NULL);
4783 unsigned long ev = 0; // short exponent vector
4784 unsigned int n = BIT_SIZEOF_LONG / r->N; // number of bits per exp
4785 unsigned int m1; // highest bit which is filled with (n+1)
4786 unsigned int i=0;
4787 int j=1;
4788
4789 if (n == 0)
4790 {
4791 if (r->N <2*BIT_SIZEOF_LONG)
4792 {
4793 n=1;
4794 m1=0;
4795 }
4796 else
4797 {
4798 for (; j<=r->N; j++)
4799 {
4800 if (p_GetExp(p,j,r) > 0) i++;
4801 if (i == BIT_SIZEOF_LONG) break;
4802 }
4803 if (i>0)
4804 ev = ~(0UL) >> (BIT_SIZEOF_LONG - i);
4805 return ev;
4806 }
4807 }
4808 else
4809 {
4810 m1 = (n+1)*(BIT_SIZEOF_LONG - n*r->N);
4811 }
4812
4813 n++;
4814 while (i<m1)
4815 {
4816 ev |= GetBitFields(p_GetExp(p, j,r), i, n);
4817 i += n;
4818 j++;
4819 }
4820
4821 n--;
4822 while (i<BIT_SIZEOF_LONG)
4823 {
4824 ev |= GetBitFields(p_GetExp(p, j,r), i, n);
4825 i += n;
4826 j++;
4827 }
4828 return ev;
4829}
#define BIT_SIZEOF_LONG
Definition: auxiliary.h:80
static unsigned long GetBitFields(const long e, const unsigned int s, const unsigned int n)
Definition: p_polys.cc:4748

◆ p_GetTotalDegree()

static unsigned long p_GetTotalDegree ( const unsigned long  l,
const ring  r,
const int  number_of_exps 
)
inlinestatic

Definition at line 808 of file p_polys.h.

809{
810 const unsigned long bitmask = r->bitmask;
811 unsigned long sum = (l & bitmask);
812 unsigned long j = number_of_exps - 1;
813
814 if (j > 0)
815 {
816 unsigned long i = r->BitsPerExp;
817 loop
818 {
819 sum += ((l >> i) & bitmask);
820 j--;
821 if (j==0) break;
822 i += r->BitsPerExp;
823 }
824 }
825 return sum;
826}

◆ p_GetVariables()

int p_GetVariables ( poly  p,
int *  e,
const ring  r 
)

set entry e[i] to 1 if var(i) occurs in p, ignore var(j) if e[j]>0 return #(e[i]>0)

Definition at line 1267 of file p_polys.cc.

1268{
1269 int i;
1270 int n=0;
1271 while(p!=NULL)
1272 {
1273 n=0;
1274 for(i=r->N; i>0; i--)
1275 {
1276 if(e[i]==0)
1277 {
1278 if (p_GetExp(p,i,r)>0)
1279 {
1280 e[i]=1;
1281 n++;
1282 }
1283 }
1284 else
1285 n++;
1286 }
1287 if (n==r->N) break;
1288 pIter(p);
1289 }
1290 return n;
1291}

◆ p_HasNotCF()

BOOLEAN p_HasNotCF ( poly  p1,
poly  p2,
const ring  r 
)

Definition at line 1329 of file p_polys.cc.

1330{
1331
1332 if (p_GetComp(p1,r) > 0 || p_GetComp(p2,r) > 0)
1333 return FALSE;
1334 int i = rVar(r);
1335 loop
1336 {
1337 if ((p_GetExp(p1, i, r) > 0) && (p_GetExp(p2, i, r) > 0))
1338 return FALSE;
1339 i--;
1340 if (i == 0)
1341 return TRUE;
1342 }
1343}

◆ p_HasNotCFRing()

BOOLEAN p_HasNotCFRing ( poly  p1,
poly  p2,
const ring  r 
)

Definition at line 1345 of file p_polys.cc.

1346{
1347
1348 if (p_GetComp(p1,r) > 0 || p_GetComp(p2,r) > 0)
1349 return FALSE;
1350 int i = rVar(r);
1351 loop
1352 {
1353 if ((p_GetExp(p1, i, r) > 0) && (p_GetExp(p2, i, r) > 0))
1354 return FALSE;
1355 i--;
1356 if (i == 0) {
1357 if (n_DivBy(pGetCoeff(p1), pGetCoeff(p2), r->cf) ||
1358 n_DivBy(pGetCoeff(p2), pGetCoeff(p1), r->cf)) {
1359 return FALSE;
1360 } else {
1361 return TRUE;
1362 }
1363 }
1364 }
1365}

◆ p_Head()

static poly p_Head ( const poly  p,
const ring  r 
)
inlinestatic

copy the (leading) term of p

Definition at line 858 of file p_polys.h.

859{
860 if (p == NULL) return NULL;
862 poly np;
863 omTypeAllocBin(poly, np, r->PolyBin);
864 p_SetRingOfLm(np, r);
865 memcpy(np->exp, p->exp, r->ExpL_Size*sizeof(long));
866 pNext(np) = NULL;
867 pSetCoeff0(np, n_Copy(pGetCoeff(p), r->cf));
868 return np;
869}

◆ p_Head0()

poly p_Head0 ( const poly  p,
const ring  r 
)

like p_Head, but allow NULL coeff

Definition at line 4939 of file p_polys.cc.

4940{
4941 if (p==NULL) return NULL;
4942 if (pGetCoeff(p)==NULL) return p_CopyPowerProduct0(p,NULL,r);
4943 return p_Head(p,r);
4944}

◆ p_Homogen()

poly p_Homogen ( poly  p,
int  varnum,
const ring  r 
)

Definition at line 3270 of file p_polys.cc.

3271{
3272 pFDegProc deg;
3273 if (r->pLexOrder && (r->order[0]==ringorder_lp))
3274 deg=p_Totaldegree;
3275 else
3276 deg=r->pFDeg;
3277
3278 poly q=NULL, qn;
3279 int o,ii;
3280 sBucket_pt bp;
3281
3282 if (p!=NULL)
3283 {
3284 if ((varnum < 1) || (varnum > rVar(r)))
3285 {
3286 return NULL;
3287 }
3288 o=deg(p,r);
3289 q=pNext(p);
3290 while (q != NULL)
3291 {
3292 ii=deg(q,r);
3293 if (ii>o) o=ii;
3294 pIter(q);
3295 }
3296 q = p_Copy(p,r);
3297 bp = sBucketCreate(r);
3298 while (q != NULL)
3299 {
3300 ii = o-deg(q,r);
3301 if (ii!=0)
3302 {
3303 p_AddExp(q,varnum, (long)ii,r);
3304 p_Setm(q,r);
3305 }
3306 qn = pNext(q);
3307 pNext(q) = NULL;
3308 sBucket_Add_m(bp, q);
3309 q = qn;
3310 }
3311 sBucketDestroyAdd(bp, &q, &ii);
3312 }
3313 return q;
3314}
static long p_AddExp(poly p, int v, long ee, ring r)
Definition: p_polys.h:604
long(* pFDegProc)(poly p, ring r)
Definition: ring.h:38
@ ringorder_lp
Definition: ring.h:77
void sBucket_Add_m(sBucket_pt bucket, poly p)
Definition: sbuckets.cc:173
sBucket_pt sBucketCreate(const ring r)
Definition: sbuckets.cc:96
void sBucketDestroyAdd(sBucket_pt bucket, poly *p, int *length)
Definition: sbuckets.h:68

◆ p_IncrExp()

static long p_IncrExp ( poly  p,
int  v,
ring  r 
)
inlinestatic

Definition at line 589 of file p_polys.h.

590{
592 int e = p_GetExp(p,v,r);
593 e++;
594 return p_SetExp(p,v,e,r);
595}

◆ p_Init() [1/2]

static poly p_Init ( const ring  r)
inlinestatic

Definition at line 1328 of file p_polys.h.

1329{
1330 return p_Init(r, r->PolyBin);
1331}

◆ p_Init() [2/2]

static poly p_Init ( const ring  r,
omBin  bin 
)
inlinestatic

Definition at line 1318 of file p_polys.h.

1319{
1320 p_CheckRing1(r);
1321 pAssume1(bin != NULL && omSizeWOfBin(r->PolyBin) == omSizeWOfBin(bin));
1322 poly p;
1323 omTypeAlloc0Bin(poly, p, bin);
1325 p_SetRingOfLm(p, r);
1326 return p;
1327}
#define p_CheckRing1(r)
Definition: monomials.h:178
#define omTypeAlloc0Bin(type, addr, bin)
Definition: omAllocDecl.h:204

◆ p_InitContent()

number p_InitContent ( poly  ph,
const ring  r 
)

Definition at line 2635 of file p_polys.cc.

2638{
2640 assume(ph!=NULL);
2641 assume(pNext(ph)!=NULL);
2642 assume(rField_is_Q(r));
2643 if (pNext(pNext(ph))==NULL)
2644 {
2645 return n_GetNumerator(pGetCoeff(pNext(ph)),r->cf);
2646 }
2647 poly p=ph;
2648 number n1=n_GetNumerator(pGetCoeff(p),r->cf);
2649 pIter(p);
2650 number n2=n_GetNumerator(pGetCoeff(p),r->cf);
2651 pIter(p);
2652 number d;
2653 number t;
2654 loop
2655 {
2656 nlNormalize(pGetCoeff(p),r->cf);
2657 t=n_GetNumerator(pGetCoeff(p),r->cf);
2658 if (nlGreaterZero(t,r->cf))
2659 d=nlAdd(n1,t,r->cf);
2660 else
2661 d=nlSub(n1,t,r->cf);
2662 nlDelete(&t,r->cf);
2663 nlDelete(&n1,r->cf);
2664 n1=d;
2665 pIter(p);
2666 if (p==NULL) break;
2667 nlNormalize(pGetCoeff(p),r->cf);
2668 t=n_GetNumerator(pGetCoeff(p),r->cf);
2669 if (nlGreaterZero(t,r->cf))
2670 d=nlAdd(n2,t,r->cf);
2671 else
2672 d=nlSub(n2,t,r->cf);
2673 nlDelete(&t,r->cf);
2674 nlDelete(&n2,r->cf);
2675 n2=d;
2676 pIter(p);
2677 if (p==NULL) break;
2678 }
2679 d=nlGcd(n1,n2,r->cf);
2680 nlDelete(&n1,r->cf);
2681 nlDelete(&n2,r->cf);
2682 return d;
2683}
2684#else
2685{
2686 /* ph has al least 2 terms */
2687 number d=pGetCoeff(ph);
2688 int s=n_Size(d,r->cf);
2689 pIter(ph);
2690 number d2=pGetCoeff(ph);
2691 int s2=n_Size(d2,r->cf);
2692 pIter(ph);
2693 if (ph==NULL)
2694 {
2695 if (s<s2) return n_Copy(d,r->cf);
2696 else return n_Copy(d2,r->cf);
2697 }
2698 do
2699 {
2700 number nd=pGetCoeff(ph);
2701 int ns=n_Size(nd,r->cf);
2702 if (ns<=2)
2703 {
2704 s2=s;
2705 d2=d;
2706 d=nd;
2707 s=ns;
2708 break;
2709 }
2710 else if (ns<s)
2711 {
2712 s2=s;
2713 d2=d;
2714 d=nd;
2715 s=ns;
2716 }
2717 pIter(ph);
2718 }
2719 while(ph!=NULL);
2720 return n_SubringGcd(d,d2,r->cf);
2721}
static FORCE_INLINE int n_Size(number n, const coeffs r)
return a non-negative measure for the complexity of n; return 0 only when n represents zero; (used fo...
Definition: coeffs.h:567
static FORCE_INLINE number n_GetNumerator(number &n, const coeffs r)
return the numerator of n (if elements of r are by nature not fractional, result is n)
Definition: coeffs.h:605
LINLINE number nlAdd(number la, number li, const coeffs r)
Definition: longrat.cc:2701
LINLINE number nlSub(number la, number li, const coeffs r)
Definition: longrat.cc:2767
LINLINE void nlDelete(number *a, const coeffs r)
Definition: longrat.cc:2666
BOOLEAN nlGreaterZero(number za, const coeffs r)
Definition: longrat.cc:1308
number nlGcd(number a, number b, const coeffs r)
Definition: longrat.cc:1345
void nlNormalize(number &x, const coeffs r)
Definition: longrat.cc:1486

◆ p_IsConstant()

static BOOLEAN p_IsConstant ( const poly  p,
const ring  r 
)
inlinestatic

Definition at line 1962 of file p_polys.h.

1963{
1964 if (p == NULL) return TRUE;
1965 return (pNext(p)==NULL) && p_LmIsConstant(p, r);
1966}
static BOOLEAN p_LmIsConstant(const poly p, const ring r)
Definition: p_polys.h:1021

◆ p_IsConstantComp()

static BOOLEAN p_IsConstantComp ( const poly  p,
const ring  r 
)
inlinestatic

like the respective p_LmIs* routines, except that p might be empty

Definition at line 1956 of file p_polys.h.

1957{
1958 if (p == NULL) return TRUE;
1959 return (pNext(p)==NULL) && p_LmIsConstantComp(p, r);
1960}
static BOOLEAN p_LmIsConstantComp(const poly p, const ring r)
Definition: p_polys.h:1004

◆ p_IsConstantPoly()

static BOOLEAN p_IsConstantPoly ( const poly  p,
const ring  r 
)
inlinestatic

Definition at line 1976 of file p_polys.h.

1977{
1978 p_Test(p, r);
1979 poly pp=p;
1980 while(pp!=NULL)
1981 {
1982 if (! p_LmIsConstantComp(pp, r))
1983 return FALSE;
1984 pIter(pp);
1985 }
1986 return TRUE;
1987}

◆ p_ISet()

poly p_ISet ( long  i,
const ring  r 
)

returns the poly representing the integer i

Definition at line 1297 of file p_polys.cc.

1298{
1299 poly rc = NULL;
1300 if (i!=0)
1301 {
1302 rc = p_Init(r);
1303 pSetCoeff0(rc,n_Init(i,r->cf));
1304 if (n_IsZero(pGetCoeff(rc),r->cf))
1305 p_LmDelete(&rc,r);
1306 }
1307 return rc;
1308}

◆ p_IsHomogeneous()

BOOLEAN p_IsHomogeneous ( poly  p,
const ring  r 
)

Definition at line 3319 of file p_polys.cc.

3320{
3321 poly qp=p;
3322 int o;
3323
3324 if ((p == NULL) || (pNext(p) == NULL)) return TRUE;
3325 pFDegProc d;
3326 if (r->pLexOrder && (r->order[0]==ringorder_lp))
3327 d=p_Totaldegree;
3328 else
3329 d=r->pFDeg;
3330 o = d(p,r);
3331 do
3332 {
3333 if (d(qp,r) != o) return FALSE;
3334 pIter(qp);
3335 }
3336 while (qp != NULL);
3337 return TRUE;
3338}

◆ p_IsHomogeneousW() [1/2]

BOOLEAN p_IsHomogeneousW ( poly  p,
const intvec w,
const intvec module_w,
const ring  r 
)

Definition at line 3360 of file p_polys.cc.

3361{
3362 poly qp=p;
3363 long o;
3364
3365 if ((p == NULL) || (pNext(p) == NULL)) return TRUE;
3366 pIter(qp);
3367 o = totaldegreeWecart_IV(p,r,w->ivGetVec())+(*module_w)[p_GetComp(p,r)];
3368 do
3369 {
3370 long oo=totaldegreeWecart_IV(qp,r,w->ivGetVec())+(*module_w)[p_GetComp(qp,r)];
3371 if (oo != o) return FALSE;
3372 pIter(qp);
3373 }
3374 while (qp != NULL);
3375 return TRUE;
3376}

◆ p_IsHomogeneousW() [2/2]

BOOLEAN p_IsHomogeneousW ( poly  p,
const intvec w,
const ring  r 
)

Definition at line 3343 of file p_polys.cc.

3344{
3345 poly qp=p;
3346 long o;
3347
3348 if ((p == NULL) || (pNext(p) == NULL)) return TRUE;
3349 pIter(qp);
3350 o = totaldegreeWecart_IV(p,r,w->ivGetVec());
3351 do
3352 {
3353 if (totaldegreeWecart_IV(qp,r,w->ivGetVec()) != o) return FALSE;
3354 pIter(qp);
3355 }
3356 while (qp != NULL);
3357 return TRUE;
3358}

◆ p_IsOne()

static BOOLEAN p_IsOne ( const poly  p,
const ring  R 
)
inlinestatic

either poly(1) or gen(k)?!

Definition at line 1969 of file p_polys.h.

1970{
1971 if (p == NULL) return FALSE; /* TODO check if 0 == 1 */
1972 p_Test(p, R);
1973 return (p_IsConstant(p, R) && n_IsOne(p_GetCoeff(p, R), R->cf));
1974}

◆ p_IsPurePower()

int p_IsPurePower ( const poly  p,
const ring  r 
)

return i, if head depends only on var(i)

Definition at line 1226 of file p_polys.cc.

1227{
1228 int i,k=0;
1229
1230 for (i=r->N;i;i--)
1231 {
1232 if (p_GetExp(p,i, r)!=0)
1233 {
1234 if(k!=0) return 0;
1235 k=i;
1236 }
1237 }
1238 return k;
1239}

◆ p_IsUnit()

static BOOLEAN p_IsUnit ( const poly  p,
const ring  r 
)
inlinestatic

Definition at line 1989 of file p_polys.h.

1990{
1991 if (p == NULL) return FALSE;
1992 if (rField_is_Ring(r))
1993 return (p_LmIsConstant(p, r) && n_IsUnit(pGetCoeff(p),r->cf));
1994 return p_LmIsConstant(p, r);
1995}
static FORCE_INLINE BOOLEAN n_IsUnit(number n, const coeffs r)
TRUE iff n has a multiplicative inverse in the given coeff field/ring r.
Definition: coeffs.h:512

◆ p_IsUnivariate()

int p_IsUnivariate ( poly  p,
const ring  r 
)

return i, if poly depends only on var(i)

Definition at line 1247 of file p_polys.cc.

1248{
1249 int i,k=-1;
1250
1251 while (p!=NULL)
1252 {
1253 for (i=r->N;i;i--)
1254 {
1255 if (p_GetExp(p,i, r)!=0)
1256 {
1257 if((k!=-1)&&(k!=i)) return 0;
1258 k=i;
1259 }
1260 }
1261 pIter(p);
1262 }
1263 return k;
1264}

◆ p_Jet()

poly p_Jet ( poly  p,
int  m,
const ring  R 
)

Definition at line 4386 of file p_polys.cc.

4387{
4388 while((p!=NULL) && (p_Totaldegree(p,R)>m)) p_LmDelete(&p,R);
4389 if (p==NULL) return NULL;
4390 poly r=p;
4391 while (pNext(p)!=NULL)
4392 {
4393 if (p_Totaldegree(pNext(p),R)>m)
4394 {
4395 p_LmDelete(&pNext(p),R);
4396 }
4397 else
4398 pIter(p);
4399 }
4400 return r;
4401}

◆ p_JetW()

poly p_JetW ( poly  p,
int  m,
int *  w,
const ring  R 
)

Definition at line 4430 of file p_polys.cc.

4431{
4432 while((p!=NULL) && (totaldegreeWecart_IV(p,R,w)>m)) p_LmDelete(&p,R);
4433 if (p==NULL) return NULL;
4434 poly r=p;
4435 while (pNext(p)!=NULL)
4436 {
4438 {
4439 p_LmDelete(&pNext(p),R);
4440 }
4441 else
4442 pIter(p);
4443 }
4444 return r;
4445}

◆ p_Last()

poly p_Last ( const poly  a,
int &  l,
const ring  r 
)

Definition at line 4621 of file p_polys.cc.

4622{
4623 if (p == NULL)
4624 {
4625 l = 0;
4626 return NULL;
4627 }
4628 l = 1;
4629 poly a = p;
4630 if (! rIsSyzIndexRing(r))
4631 {
4632 poly next = pNext(a);
4633 while (next!=NULL)
4634 {
4635 a = next;
4636 next = pNext(a);
4637 l++;
4638 }
4639 }
4640 else
4641 {
4642 long unsigned curr_limit = rGetCurrSyzLimit(r);
4643 poly pp = a;
4644 while ((a=pNext(a))!=NULL)
4645 {
4646 if (__p_GetComp(a,r)<=curr_limit/*syzComp*/)
4647 l++;
4648 else break;
4649 pp = a;
4650 }
4651 a=pp;
4652 }
4653 return a;
4654}
ListNode * next
Definition: janet.h:31
static int rGetCurrSyzLimit(const ring r)
Definition: ring.h:723
static BOOLEAN rIsSyzIndexRing(const ring r)
Definition: ring.h:720

◆ p_Lcm() [1/2]

poly p_Lcm ( const poly  a,
const poly  b,
const ring  r 
)

Definition at line 1664 of file p_polys.cc.

1665{
1666 poly m=p_Init(r);
1667 p_Lcm(a, b, m, r);
1668 p_Setm(m,r);
1669 return(m);
1670}
void p_Lcm(const poly a, const poly b, poly m, const ring r)
Definition: p_polys.cc:1655

◆ p_Lcm() [2/2]

void p_Lcm ( const poly  a,
const poly  b,
poly  m,
const ring  r 
)

Definition at line 1655 of file p_polys.cc.

1656{
1657 for (int i=r->N; i; --i)
1658 p_SetExp(m,i, si_max( p_GetExp(a,i,r), p_GetExp(b,i,r)),r);
1659
1660 p_SetComp(m, si_max(p_GetComp(a,r), p_GetComp(b,r)),r);
1661 /* Don't do a pSetm here, otherwise hres/lres chockes */
1662}
static int si_max(const int a, const int b)
Definition: auxiliary.h:124
static unsigned long p_SetComp(poly p, unsigned long c, ring r)
Definition: p_polys.h:245

◆ p_LcmRat()

poly p_LcmRat ( const poly  a,
const poly  b,
const long  lCompM,
const ring  r 
)

Definition at line 1677 of file p_polys.cc.

1678{
1679 poly m = // p_One( r);
1680 p_Init(r);
1681
1682// const int (currRing->N) = r->N;
1683
1684 // for (int i = (currRing->N); i>=r->real_var_start; i--)
1685 for (int i = r->real_var_end; i>=r->real_var_start; i--)
1686 {
1687 const int lExpA = p_GetExp (a, i, r);
1688 const int lExpB = p_GetExp (b, i, r);
1689
1690 p_SetExp (m, i, si_max(lExpA, lExpB), r);
1691 }
1692
1693 p_SetComp (m, lCompM, r);
1694 p_Setm(m,r);
1695 p_GetCoeff(m, r)=NULL;
1696
1697 return(m);
1698};

◆ p_LDeg()

static long p_LDeg ( const poly  p,
int *  l,
const ring  r 
)
inlinestatic

Definition at line 379 of file p_polys.h.

379{ return r->pLDeg(p,l,r); }

◆ p_LmCheckIsFromRing()

BOOLEAN p_LmCheckIsFromRing ( poly  p,
ring  r 
)

Definition at line 74 of file pDebug.cc.

75{
76 if (p != NULL)
77 {
78 #if (OM_TRACK > 0) && defined(OM_TRACK_CUSTOM)
79 void* custom = omGetCustomOfAddr(p);
80 if (custom != NULL)
81 {
82 pPolyAssumeReturnMsg(custom == r ||
83 // be more sloppy for qrings
84 (r->qideal != NULL &&
86 omSizeWOfAddr(p)==omSizeWOfBin(r->PolyBin)) ||
87 rSamePolyRep((ring) custom, r),
88 "monomial not from specified ring",p,r);
89 return TRUE;
90 }
91 else
92 #endif
93 #ifndef X_OMALLOC
94 {
97 return TRUE;
98 }
99 return FALSE;
100 #endif
101 }
102 return TRUE;
103}
#define pPolyAssumeReturnMsg(cond, msg)
Definition: monomials.h:137
#define _pPolyAssumeReturn(cond, p, r)
Definition: monomials.h:101
#define omIsBinPageAddr(addr)
Definition: omBinPage.h:68
#define omSizeWOfAddr(P)
Definition: xalloc.h:223

◆ p_LmCheckPolyRing()

BOOLEAN p_LmCheckPolyRing ( poly  p,
ring  r 
)

Definition at line 123 of file pDebug.cc.

124{
125 #ifndef X_OMALLOC
126 pAssumeReturn(r != NULL && r->PolyBin != NULL);
127 #endif
128 pAssumeReturn(p != NULL);
129 return p_LmCheckIsFromRing(p, r);
130}

◆ p_LmCmp()

static int p_LmCmp ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1578 of file p_polys.h.

1579{
1581 p_LmCheckPolyRing1(q, r);
1582
1583 const unsigned long* _s1 = ((unsigned long*) p->exp);
1584 const unsigned long* _s2 = ((unsigned long*) q->exp);
1585 REGISTER unsigned long _v1;
1586 REGISTER unsigned long _v2;
1587 const unsigned long _l = r->CmpL_Size;
1588
1589 REGISTER unsigned long _i=0;
1590
1591 LengthGeneral_OrdGeneral_LoopTop:
1592 _v1 = _s1[_i];
1593 _v2 = _s2[_i];
1594 if (_v1 == _v2)
1595 {
1596 _i++;
1597 if (_i == _l) return 0;
1598 goto LengthGeneral_OrdGeneral_LoopTop;
1599 }
1600 const long* _ordsgn = (long*) r->ordsgn;
1601#if 1 /* two variants*/
1602 if (_v1 > _v2)
1603 {
1604 return _ordsgn[_i];
1605 }
1606 return -(_ordsgn[_i]);
1607#else
1608 if (_v1 > _v2)
1609 {
1610 if (_ordsgn[_i] == 1) return 1;
1611 return -1;
1612 }
1613 if (_ordsgn[_i] == 1) return -1;
1614 return 1;
1615#endif
1616}
if(!FE_OPT_NO_SHELL_FLAG)(void) system(sys)
#define REGISTER
Definition: omalloc.h:27

◆ p_LmDelete() [1/2]

static void p_LmDelete ( poly *  p,
const ring  r 
)
inlinestatic

Definition at line 741 of file p_polys.h.

742{
744 poly h = *p;
745 *p = pNext(h);
746 n_Delete(&pGetCoeff(h), r->cf);
747 #ifdef XALLOC_BIN
748 omFreeBin(h,r->PolyBin);
749 #else
751 #endif
752}
#define omFreeBin(addr, bin)
Definition: omAllocDecl.h:259
#define omFreeBinAddr(addr)
Definition: omAllocDecl.h:258

◆ p_LmDelete() [2/2]

static void p_LmDelete ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 721 of file p_polys.h.

722{
724 n_Delete(&pGetCoeff(p), r->cf);
725 #ifdef XALLOC_BIN
726 omFreeBin(p,r->PolyBin);
727 #else
729 #endif
730}

◆ p_LmDelete0()

static void p_LmDelete0 ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 731 of file p_polys.h.

732{
734 if (pGetCoeff(p)!=NULL) n_Delete(&pGetCoeff(p), r->cf);
735 #ifdef XALLOC_BIN
736 omFreeBin(p,r->PolyBin);
737 #else
739 #endif
740}

◆ p_LmDeleteAndNext()

static poly p_LmDeleteAndNext ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 753 of file p_polys.h.

754{
756 poly pnext = pNext(p);
757 n_Delete(&pGetCoeff(p), r->cf);
758 #ifdef XALLOC_BIN
759 omFreeBin(p,r->PolyBin);
760 #else
762 #endif
763 return pnext;
764}

◆ p_LmDeleteAndNextRat()

void p_LmDeleteAndNextRat ( poly *  p,
int  ishift,
ring  r 
)

Definition at line 1700 of file p_polys.cc.

1701{
1702 /* modifies p*/
1703 // Print("start: "); Print(" "); p_wrp(*p,r);
1704 p_LmCheckPolyRing2(*p, r);
1705 poly q = p_Head(*p,r);
1706 const long cmp = p_GetComp(*p, r);
1707 while ( ( (*p)!=NULL ) && ( p_Comp_k_n(*p, q, ishift+1, r) ) && (p_GetComp(*p, r) == cmp) )
1708 {
1709 p_LmDelete(p,r);
1710 // Print("while: ");p_wrp(*p,r);Print(" ");
1711 }
1712 // p_wrp(*p,r);Print(" ");
1713 // PrintS("end\n");
1714 p_LmDelete(&q,r);
1715}

◆ p_LmDivisibleBy()

static BOOLEAN p_LmDivisibleBy ( poly  a,
poly  b,
const ring  r 
)
inlinestatic

Definition at line 1889 of file p_polys.h.

1890{
1892 pIfThen1(a != NULL, p_LmCheckPolyRing1(b, r));
1893 if (p_GetComp(a, r) == 0 || p_GetComp(a,r) == p_GetComp(b,r))
1894 return _p_LmDivisibleByNoComp(a, b, r);
1895 return FALSE;
1896}

◆ p_LmDivisibleByNoComp() [1/2]

static BOOLEAN p_LmDivisibleByNoComp ( poly  a,
const ring  ra,
poly  b,
const ring  rb 
)
inlinestatic

Definition at line 1882 of file p_polys.h.

1883{
1884 p_LmCheckPolyRing1(a, ra);
1885 p_LmCheckPolyRing1(b, rb);
1886 return _p_LmDivisibleByNoComp(a, ra, b, rb);
1887}

◆ p_LmDivisibleByNoComp() [2/2]

static BOOLEAN p_LmDivisibleByNoComp ( poly  a,
poly  b,
const ring  r 
)
inlinestatic

Definition at line 1875 of file p_polys.h.

1876{
1877 p_LmCheckPolyRing1(a, r);
1879 return _p_LmDivisibleByNoComp(a, b, r);
1880}

◆ p_LmDivisibleByPart()

static BOOLEAN p_LmDivisibleByPart ( poly  a,
poly  b,
const ring  r,
const int  start,
const int  end 
)
inlinestatic

Definition at line 1860 of file p_polys.h.

1861{
1863 pIfThen1(a != NULL, p_LmCheckPolyRing1(b, r));
1864 if (p_GetComp(a, r) == 0 || p_GetComp(a,r) == p_GetComp(b,r))
1865 return _p_LmDivisibleByNoCompPart(a, r, b, r,start, end);
1866 return FALSE;
1867}

◆ p_LmExpVectorAddIsOk()

static BOOLEAN p_LmExpVectorAddIsOk ( const poly  p1,
const poly  p2,
const ring  r 
)
inlinestatic

Definition at line 1997 of file p_polys.h.

1999{
2000 p_LmCheckPolyRing(p1, r);
2001 p_LmCheckPolyRing(p2, r);
2002 unsigned long l1, l2, divmask = r->divmask;
2003 int i;
2004
2005 for (i=0; i<r->VarL_Size; i++)
2006 {
2007 l1 = p1->exp[r->VarL_Offset[i]];
2008 l2 = p2->exp[r->VarL_Offset[i]];
2009 // do the divisiblity trick
2010 if ( (l1 > ULONG_MAX - l2) ||
2011 (((l1 & divmask) ^ (l2 & divmask)) != ((l1 + l2) & divmask)))
2012 return FALSE;
2013 }
2014 return TRUE;
2015}

◆ p_LmFree() [1/2]

static void p_LmFree ( poly *  p,
ring   
)
inlinestatic

Definition at line 694 of file p_polys.h.

696{
698 poly h = *p;
699 *p = pNext(h);
700 #ifdef XALLOC_BIN
701 omFreeBin(h,r->PolyBin);
702 #else
704 #endif
705}

◆ p_LmFree() [2/2]

static void p_LmFree ( poly  p,
ring   
)
inlinestatic

Definition at line 681 of file p_polys.h.

683{
685 #ifdef XALLOC_BIN
686 omFreeBin(p,r->PolyBin);
687 #else
689 #endif
690}

◆ p_LmFreeAndNext()

static poly p_LmFreeAndNext ( poly  p,
ring   
)
inlinestatic

Definition at line 709 of file p_polys.h.

711{
713 poly pnext = pNext(p);
714 #ifdef XALLOC_BIN
715 omFreeBin(p,r->PolyBin);
716 #else
718 #endif
719 return pnext;
720}

◆ p_LmInit() [1/3]

static poly p_LmInit ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 1333 of file p_polys.h.

1334{
1336 poly np;
1337 omTypeAllocBin(poly, np, r->PolyBin);
1338 p_SetRingOfLm(np, r);
1339 memcpy(np->exp, p->exp, r->ExpL_Size*sizeof(long));
1340 pNext(np) = NULL;
1341 pSetCoeff0(np, NULL);
1342 return np;
1343}

◆ p_LmInit() [2/3]

static poly p_LmInit ( poly  s_p,
const ring  s_r,
const ring  d_r 
)
inlinestatic

Definition at line 1361 of file p_polys.h.

1362{
1363 pAssume1(d_r != NULL);
1364 return p_LmInit(s_p, s_r, d_r, d_r->PolyBin);
1365}

◆ p_LmInit() [3/3]

static poly p_LmInit ( poly  s_p,
const ring  s_r,
const ring  d_r,
omBin  d_bin 
)
inlinestatic

Definition at line 1344 of file p_polys.h.

1345{
1346 p_LmCheckPolyRing1(s_p, s_r);
1347 p_CheckRing(d_r);
1348 pAssume1(d_r->N <= s_r->N);
1349 poly d_p = p_Init(d_r, d_bin);
1350 for (unsigned i=d_r->N; i!=0; i--)
1351 {
1352 p_SetExp(d_p, i, p_GetExp(s_p, i,s_r), d_r);
1353 }
1354 if (rRing_has_Comp(d_r))
1355 {
1356 p_SetComp(d_p, p_GetComp(s_p,s_r), d_r);
1357 }
1358 p_Setm(d_p, d_r);
1359 return d_p;
1360}
BOOLEAN p_CheckRing(ring r)
Definition: pDebug.cc:131

◆ p_LmIsConstant()

static BOOLEAN p_LmIsConstant ( const poly  p,
const ring  r 
)
inlinestatic

Definition at line 1021 of file p_polys.h.

1022{
1023 if (p_LmIsConstantComp(p, r))
1024 return (p_GetComp(p, r) == 0);
1025 return FALSE;
1026}

◆ p_LmIsConstantComp()

static BOOLEAN p_LmIsConstantComp ( const poly  p,
const ring  r 
)
inlinestatic

Definition at line 1004 of file p_polys.h.

1005{
1006 //p_LmCheckPolyRing(p, r);
1007 int i = r->VarL_Size - 1;
1008
1009 do
1010 {
1011 if (p->exp[r->VarL_Offset[i]] != 0)
1012 return FALSE;
1013 i--;
1014 }
1015 while (i >= 0);
1016 return TRUE;
1017}

◆ p_LmShallowCopyDelete()

static poly p_LmShallowCopyDelete ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 1391 of file p_polys.h.

1392{
1394 pAssume1(omSizeWOfBin(bin) == omSizeWOfBin(r->PolyBin));
1395 poly new_p = p_New(r);
1396 memcpy(new_p->exp, p->exp, r->ExpL_Size*sizeof(long));
1397 pSetCoeff0(new_p, pGetCoeff(p));
1398 pNext(new_p) = pNext(p);
1400 return new_p;
1401}
static poly p_New(const ring, omBin bin)
Definition: p_polys.h:662

◆ p_LmShortDivisibleBy()

static BOOLEAN p_LmShortDivisibleBy ( poly  a,
unsigned long  sev_a,
poly  b,
unsigned long  not_sev_b,
const ring  r 
)
inlinestatic

Definition at line 1908 of file p_polys.h.

1910{
1911 p_LmCheckPolyRing1(a, r);
1913#ifndef PDIV_DEBUG
1914 _pPolyAssume2(p_GetShortExpVector(a, r) == sev_a, a, r);
1915 _pPolyAssume2(p_GetShortExpVector(b, r) == ~ not_sev_b, b, r);
1916
1917 if (sev_a & not_sev_b)
1918 {
1920 return FALSE;
1921 }
1922 return p_LmDivisibleBy(a, b, r);
1923#else
1924 return pDebugLmShortDivisibleBy(a, sev_a, r, b, not_sev_b, r);
1925#endif
1926}
#define _pPolyAssume2(cond, p, r)
Definition: monomials.h:195
static BOOLEAN p_LmDivisibleByNoComp(poly a, poly b, const ring r)
Definition: p_polys.h:1875
static BOOLEAN p_LmDivisibleBy(poly a, poly b, const ring r)
Definition: p_polys.h:1889
unsigned long p_GetShortExpVector(const poly a, const ring r)
Definition: p_polys.cc:4780

◆ p_LmShortDivisibleByNoComp()

static BOOLEAN p_LmShortDivisibleByNoComp ( poly  a,
unsigned long  sev_a,
poly  b,
unsigned long  not_sev_b,
const ring  r 
)
inlinestatic

Definition at line 1928 of file p_polys.h.

1930{
1931 p_LmCheckPolyRing1(a, r);
1933#ifndef PDIV_DEBUG
1934 _pPolyAssume2(p_GetShortExpVector(a, r) == sev_a, a, r);
1935 _pPolyAssume2(p_GetShortExpVector(b, r) == ~ not_sev_b, b, r);
1936
1937 if (sev_a & not_sev_b)
1938 {
1940 return FALSE;
1941 }
1942 return p_LmDivisibleByNoComp(a, b, r);
1943#else
1944 return pDebugLmShortDivisibleByNoComp(a, sev_a, r, b, not_sev_b, r);
1945#endif
1946}

◆ p_LowVar()

int p_LowVar ( poly  p,
const ring  r 
)

the minimal index of used variables - 1

Definition at line 4680 of file p_polys.cc.

4681{
4682 int k,l,lex;
4683
4684 if (p == NULL) return -1;
4685
4686 k = 32000;/*a very large dummy value*/
4687 while (p != NULL)
4688 {
4689 l = 1;
4690 lex = p_GetExp(p,l,r);
4691 while ((l < (rVar(r))) && (lex == 0))
4692 {
4693 l++;
4694 lex = p_GetExp(p,l,r);
4695 }
4696 l--;
4697 if (l < k) k = l;
4698 pIter(p);
4699 }
4700 return k;
4701}

◆ p_LtCmp()

static int p_LtCmp ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1619 of file p_polys.h.

1620{
1621 int res = p_LmCmp(p,q,r);
1622 if(res == 0)
1623 {
1624 if(p_GetCoeff(p,r) == NULL || p_GetCoeff(q,r) == NULL)
1625 return res;
1626 number pc = n_Copy(p_GetCoeff(p,r),r->cf);
1627 number qc = n_Copy(p_GetCoeff(q,r),r->cf);
1628 if(!n_GreaterZero(pc,r->cf))
1629 pc = n_InpNeg(pc,r->cf);
1630 if(!n_GreaterZero(qc,r->cf))
1631 qc = n_InpNeg(qc,r->cf);
1632 if(n_Greater(pc,qc,r->cf))
1633 res = 1;
1634 else if(n_Greater(qc,pc,r->cf))
1635 res = -1;
1636 else if(n_Equal(pc,qc,r->cf))
1637 res = 0;
1638 n_Delete(&pc,r->cf);
1639 n_Delete(&qc,r->cf);
1640 }
1641 return res;
1642}
static FORCE_INLINE BOOLEAN n_Greater(number a, number b, const coeffs r)
ordered fields: TRUE iff 'a' is larger than 'b'; in Z/pZ: TRUE iff la > lb, where la and lb are the l...
Definition: coeffs.h:508

◆ p_LtCmpNoAbs()

static int p_LtCmpNoAbs ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1645 of file p_polys.h.

1646{
1647 int res = p_LmCmp(p,q,r);
1648 if(res == 0)
1649 {
1650 if(p_GetCoeff(p,r) == NULL || p_GetCoeff(q,r) == NULL)
1651 return res;
1652 number pc = p_GetCoeff(p,r);
1653 number qc = p_GetCoeff(q,r);
1654 if(n_Greater(pc,qc,r->cf))
1655 res = 1;
1656 if(n_Greater(qc,pc,r->cf))
1657 res = -1;
1658 if(n_Equal(pc,qc,r->cf))
1659 res = 0;
1660 }
1661 return res;
1662}

◆ p_LtCmpOrdSgnDiffM()

static int p_LtCmpOrdSgnDiffM ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1667 of file p_polys.h.

1668{
1669 return(p_LtCmp(p,q,r) == r->OrdSgn);
1670}
static int p_LtCmp(poly p, poly q, const ring r)
Definition: p_polys.h:1619

◆ p_LtCmpOrdSgnDiffP()

static int p_LtCmpOrdSgnDiffP ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1676 of file p_polys.h.

1677{
1678 if(r->OrdSgn == 1)
1679 {
1680 return(p_LmCmp(p,q,r) == -1);
1681 }
1682 else
1683 {
1684 return(p_LtCmp(p,q,r) != -1);
1685 }
1686}

◆ p_LtCmpOrdSgnEqM()

static int p_LtCmpOrdSgnEqM ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1692 of file p_polys.h.

1693{
1694 return(p_LtCmp(p,q,r) == -r->OrdSgn);
1695}

◆ p_LtCmpOrdSgnEqP()

static int p_LtCmpOrdSgnEqP ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1701 of file p_polys.h.

1702{
1703 return(p_LtCmp(p,q,r) == r->OrdSgn);
1704}

◆ p_MaxComp() [1/2]

static long p_MaxComp ( poly  p,
ring  lmRing 
)
inlinestatic

Definition at line 309 of file p_polys.h.

309{return p_MaxComp(p,lmRing,lmRing);}
static long p_MaxComp(poly p, ring lmRing, ring tailRing)
Definition: p_polys.h:290

◆ p_MaxComp() [2/2]

static long p_MaxComp ( poly  p,
ring  lmRing,
ring  tailRing 
)
inlinestatic

Definition at line 290 of file p_polys.h.

291{
292 long result,i;
293
294 if(p==NULL) return 0;
295 result = p_GetComp(p, lmRing);
296 if (result != 0)
297 {
298 loop
299 {
300 pIter(p);
301 if(p==NULL) break;
302 i = p_GetComp(p, tailRing);
303 if (i>result) result = i;
304 }
305 }
306 return result;
307}

◆ p_MaxExpPerVar()

int p_MaxExpPerVar ( poly  p,
int  i,
const ring  r 
)

max exponent of variable x_i in p

Definition at line 4945 of file p_polys.cc.

4946{
4947 int m=0;
4948 while(p!=NULL)
4949 {
4950 int mm=p_GetExp(p,i,r);
4951 if (mm>m) m=mm;
4952 pIter(p);
4953 }
4954 return m;
4955}

◆ p_MDivide()

poly p_MDivide ( poly  a,
poly  b,
const ring  r 
)

Definition at line 1492 of file p_polys.cc.

1493{
1494 assume((p_GetComp(a,r)==p_GetComp(b,r)) || (p_GetComp(b,r)==0));
1495 int i;
1496 poly result = p_Init(r);
1497
1498 for(i=(int)r->N; i; i--)
1499 p_SetExp(result,i, p_GetExp(a,i,r)- p_GetExp(b,i,r),r);
1500 p_SetComp(result, p_GetComp(a,r) - p_GetComp(b,r),r);
1501 p_Setm(result,r);
1502 return result;
1503}

◆ p_MemAdd_NegWeightAdjust()

static void p_MemAdd_NegWeightAdjust ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 1290 of file p_polys.h.

1291{
1292 if (r->NegWeightL_Offset != NULL)
1293 {
1294 for (int i=r->NegWeightL_Size-1; i>=0; i--)
1295 {
1296 p->exp[r->NegWeightL_Offset[i]] -= POLY_NEGWEIGHT_OFFSET;
1297 }
1298 }
1299}

◆ p_MemSub_NegWeightAdjust()

static void p_MemSub_NegWeightAdjust ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 1300 of file p_polys.h.

1301{
1302 if (r->NegWeightL_Offset != NULL)
1303 {
1304 for (int i=r->NegWeightL_Size-1; i>=0; i--)
1305 {
1306 p->exp[r->NegWeightL_Offset[i]] += POLY_NEGWEIGHT_OFFSET;
1307 }
1308 }
1309}

◆ p_Merge_q()

static poly p_Merge_q ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1210 of file p_polys.h.

1211{
1212 assume( (p != q) || (p == NULL && q == NULL) );
1213 return r->p_Procs->p_Merge_q(p, q, r);
1214}

◆ p_MinComp() [1/2]

static long p_MinComp ( poly  p,
ring  lmRing 
)
inlinestatic

Definition at line 330 of file p_polys.h.

330{return p_MinComp(p,lmRing,lmRing);}
static long p_MinComp(poly p, ring lmRing, ring tailRing)
Definition: p_polys.h:311

◆ p_MinComp() [2/2]

static long p_MinComp ( poly  p,
ring  lmRing,
ring  tailRing 
)
inlinestatic

Definition at line 311 of file p_polys.h.

312{
313 long result,i;
314
315 if(p==NULL) return 0;
316 result = p_GetComp(p,lmRing);
317 if (result != 0)
318 {
319 loop
320 {
321 pIter(p);
322 if(p==NULL) break;
323 i = p_GetComp(p,tailRing);
324 if (i<result) result = i;
325 }
326 }
327 return result;
328}

◆ p_MinDeg()

int p_MinDeg ( poly  p,
intvec w,
const ring  R 
)

Definition at line 4448 of file p_polys.cc.

4449{
4450 if(p==NULL)
4451 return -1;
4452 int d=-1;
4453 while(p!=NULL)
4454 {
4455 int d0=0;
4456 for(int j=0;j<rVar(R);j++)
4457 if(w==NULL||j>=w->length())
4458 d0+=p_GetExp(p,j+1,R);
4459 else
4460 d0+=(*w)[j]*p_GetExp(p,j+1,R);
4461 if(d0<d||d==-1)
4462 d=d0;
4463 pIter(p);
4464 }
4465 return d;
4466}

◆ p_mInit()

poly p_mInit ( const char *  s,
BOOLEAN ok,
const ring  r 
)

Definition at line 1442 of file p_polys.cc.

1443{
1444 poly p;
1445 char *sst=(char*)st;
1446 BOOLEAN neg=FALSE;
1447 if (sst[0]=='-') { neg=TRUE; sst=sst+1; }
1448 const char *s=p_Read(sst,p,r);
1449 if (*s!='\0')
1450 {
1451 if ((s!=sst)&&isdigit(sst[0]))
1452 {
1454 }
1455 ok=FALSE;
1456 if (p!=NULL)
1457 {
1458 if (pGetCoeff(p)==NULL) p_LmFree(p,r);
1459 else p_LmDelete(p,r);
1460 }
1461 return NULL;
1462 }
1463 p_Test(p,r);
1464 ok=!errorreported;
1465 if (neg) p=p_Neg(p,r);
1466 return p;
1467}
VAR short errorreported
Definition: feFopen.cc:23
const char * p_Read(const char *st, poly &rc, const ring r)
Definition: p_polys.cc:1370

◆ p_Minus_mm_Mult_qq() [1/2]

static poly p_Minus_mm_Mult_qq ( poly  p,
const poly  m,
const poly  q,
const ring  r 
)
inlinestatic

Definition at line 1079 of file p_polys.h.

1080{
1081 int shorter;
1082
1083 return r->p_Procs->p_Minus_mm_Mult_qq(p, m, q, shorter, NULL, r);
1084}

◆ p_Minus_mm_Mult_qq() [2/2]

static poly p_Minus_mm_Mult_qq ( poly  p,
const poly  m,
const poly  q,
int &  lp,
int  lq,
const poly  spNoether,
const ring  r 
)
inlinestatic

Definition at line 1068 of file p_polys.h.

1070{
1071 int shorter;
1072 const poly res = r->p_Procs->p_Minus_mm_Mult_qq(p, m, q, shorter, spNoether, r);
1073 lp += lq - shorter;
1074// assume( lp == pLength(res) );
1075 return res;
1076}

◆ p_mm_Mult()

static poly p_mm_Mult ( poly  p,
poly  m,
const ring  r 
)
inlinestatic

Definition at line 1059 of file p_polys.h.

1060{
1061 if (p==NULL) return NULL;
1062 if (p_LmIsConstant(m, r))
1063 return __p_Mult_nn(p, pGetCoeff(m), r);
1064 else
1065 return r->p_Procs->p_mm_Mult(p, m, r);
1066}

◆ p_Mult_mm()

static poly p_Mult_mm ( poly  p,
poly  m,
const ring  r 
)
inlinestatic

Definition at line 1049 of file p_polys.h.

1050{
1051 if (p==NULL) return NULL;
1052 if (p_LmIsConstant(m, r))
1053 return __p_Mult_nn(p, pGetCoeff(m), r);
1054 else
1055 return r->p_Procs->p_Mult_mm(p, m, r);
1056}

◆ p_Mult_nn() [1/2]

static poly p_Mult_nn ( poly  p,
number  n,
const ring  lmRing,
const ring  tailRing 
)
inlinestatic

Definition at line 971 of file p_polys.h.

973{
974 assume(p!=NULL);
975#ifndef PDEBUG
976 if (lmRing == tailRing)
977 return p_Mult_nn(p, n, tailRing);
978#endif
979 poly pnext = pNext(p);
980 pNext(p) = NULL;
981 p = lmRing->p_Procs->p_Mult_nn(p, n, lmRing);
982 if (pnext!=NULL)
983 {
984 pNext(p) = tailRing->p_Procs->p_Mult_nn(pnext, n, tailRing);
985 }
986 return p;
987}
static poly p_Mult_nn(poly p, number n, const ring r)
Definition: p_polys.h:956

◆ p_Mult_nn() [2/2]

static poly p_Mult_nn ( poly  p,
number  n,
const ring  r 
)
inlinestatic

Definition at line 956 of file p_polys.h.

957{
958 if (p==NULL) return NULL;
959 if (n_IsOne(n, r->cf))
960 return p;
961 else if (n_IsZero(n, r->cf))
962 {
963 p_Delete(&p, r); // NOTE: without p_Delete - memory leak!
964 return NULL;
965 }
966 else
967 return r->p_Procs->p_Mult_nn(p, n, r);
968}

◆ p_Mult_q()

static poly p_Mult_q ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1112 of file p_polys.h.

1113{
1114 assume( (p != q) || (p == NULL && q == NULL) );
1115
1116 if (p == NULL)
1117 {
1118 p_Delete(&q, r);
1119 return NULL;
1120 }
1121 if (q == NULL)
1122 {
1123 p_Delete(&p, r);
1124 return NULL;
1125 }
1126
1127 if (pNext(p) == NULL)
1128 {
1129 q = r->p_Procs->p_mm_Mult(q, p, r);
1130 p_LmDelete(&p, r);
1131 return q;
1132 }
1133
1134 if (pNext(q) == NULL)
1135 {
1136 p = r->p_Procs->p_Mult_mm(p, q, r);
1137 p_LmDelete(&q, r);
1138 return p;
1139 }
1140#if defined(HAVE_PLURAL) || defined(HAVE_SHIFTBBA)
1141 if (rIsNCRing(r))
1142 return _nc_p_Mult_q(p, q, r);
1143 else
1144#endif
1145 return _p_Mult_q(p, q, 0, r);
1146}
poly _nc_p_Mult_q(poly p, poly q, const ring r)
general NC-multiplication with destruction
Definition: old.gring.cc:215
poly _p_Mult_q(poly p, poly q, const int copy, const ring r)
Returns: p * q, Destroys: if !copy then p, q Assumes: pLength(p) >= 2 pLength(q) >=2,...
Definition: p_Mult_q.cc:313

◆ p_MultExp()

static long p_MultExp ( poly  p,
int  v,
long  ee,
ring  r 
)
inlinestatic

Definition at line 619 of file p_polys.h.

620{
622 long e = p_GetExp(p,v,r);
623 e *= ee;
624 return p_SetExp(p,v,e,r);
625}

◆ p_Neg()

static poly p_Neg ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 1105 of file p_polys.h.

1106{
1107 return r->p_Procs->p_Neg(p, r);
1108}

◆ p_New() [1/2]

static poly p_New ( const  ring,
omBin  bin 
)
inlinestatic

Definition at line 662 of file p_polys.h.

664{
665 p_CheckRing2(r);
666 pAssume2(bin != NULL && omSizeWOfBin(r->PolyBin) == omSizeWOfBin(bin));
667 poly p;
668 omTypeAllocBin(poly, p, bin);
669 p_SetRingOfLm(p, r);
670 return p;
671}
#define p_CheckRing2(r)
Definition: monomials.h:200

◆ p_New() [2/2]

static poly p_New ( ring  r)
inlinestatic

Definition at line 673 of file p_polys.h.

674{
675 return p_New(r, r->PolyBin);
676}

◆ p_Norm()

void p_Norm ( poly  p1,
const ring  r 
)

Definition at line 3719 of file p_polys.cc.

3720{
3721 if (LIKELY(rField_is_Ring(r)))
3722 {
3723 if(!n_GreaterZero(pGetCoeff(p1),r->cf)) p1 = p_Neg(p1,r);
3724 if (!n_IsUnit(pGetCoeff(p1), r->cf)) return;
3725 // Werror("p_Norm not possible in the case of coefficient rings.");
3726 }
3727 else if (LIKELY(p1!=NULL))
3728 {
3729 if (UNLIKELY(pNext(p1)==NULL))
3730 {
3731 p_SetCoeff(p1,n_Init(1,r->cf),r);
3732 return;
3733 }
3734 if (!n_IsOne(pGetCoeff(p1),r->cf))
3735 {
3736 number k = pGetCoeff(p1);
3737 pSetCoeff0(p1,n_Init(1,r->cf));
3738 poly h = pNext(p1);
3739 if (LIKELY(rField_is_Zp(r)))
3740 {
3741 if (r->cf->ch>32003)
3742 {
3743 number inv=n_Invers(k,r->cf);
3744 while (h!=NULL)
3745 {
3746 number c=n_Mult(pGetCoeff(h),inv,r->cf);
3747 // no need to normalize
3748 p_SetCoeff(h,c,r);
3749 pIter(h);
3750 }
3751 // no need for n_Delete for Zp: n_Delete(&inv,r->cf);
3752 }
3753 else
3754 {
3755 while (h!=NULL)
3756 {
3757 number c=n_Div(pGetCoeff(h),k,r->cf);
3758 // no need to normalize
3759 p_SetCoeff(h,c,r);
3760 pIter(h);
3761 }
3762 }
3763 }
3764 else if(getCoeffType(r->cf)==n_algExt)
3765 {
3766 n_Normalize(k,r->cf);
3767 number inv=n_Invers(k,r->cf);
3768 while (h!=NULL)
3769 {
3770 number c=n_Mult(pGetCoeff(h),inv,r->cf);
3771 // no need to normalize
3772 // normalize already in nMult: Zp_a, Q_a
3773 p_SetCoeff(h,c,r);
3774 pIter(h);
3775 }
3776 n_Delete(&inv,r->cf);
3777 n_Delete(&k,r->cf);
3778 }
3779 else
3780 {
3781 n_Normalize(k,r->cf);
3782 while (h!=NULL)
3783 {
3784 number c=n_Div(pGetCoeff(h),k,r->cf);
3785 // no need to normalize: Z/p, R
3786 // remains: Q
3787 if (rField_is_Q(r)) n_Normalize(c,r->cf);
3788 p_SetCoeff(h,c,r);
3789 pIter(h);
3790 }
3791 n_Delete(&k,r->cf);
3792 }
3793 }
3794 else
3795 {
3796 //if (r->cf->cfNormalize != nDummy2) //TODO: OPTIMIZE
3797 if (rField_is_Q(r))
3798 {
3799 poly h = pNext(p1);
3800 while (h!=NULL)
3801 {
3802 n_Normalize(pGetCoeff(h),r->cf);
3803 pIter(h);
3804 }
3805 }
3806 }
3807 }
3808}
#define UNLIKELY(X)
Definition: auxiliary.h:404
#define LIKELY(X)
Definition: auxiliary.h:403

◆ p_Normalize()

void p_Normalize ( poly  p,
const ring  r 
)

Definition at line 3813 of file p_polys.cc.

3814{
3815 const coeffs cf=r->cf;
3816 /* Z/p, GF(p,n), R, long R/C, Nemo rings */
3817 if (cf->cfNormalize==ndNormalize)
3818 return;
3819 while (p!=NULL)
3820 {
3821 // no test befor n_Normalize: n_Normalize should fix problems
3823 pIter(p);
3824 }
3825}
void ndNormalize(number &, const coeffs)
Definition: numbers.cc:187

◆ p_NSet()

poly p_NSet ( number  n,
const ring  r 
)

returns the poly representing the number n, destroys n

Definition at line 1473 of file p_polys.cc.

1474{
1475 if (n_IsZero(n,r->cf))
1476 {
1477 n_Delete(&n, r->cf);
1478 return NULL;
1479 }
1480 else
1481 {
1482 poly rc = p_Init(r);
1483 pSetCoeff0(rc,n);
1484 return rc;
1485 }
1486}

◆ p_One()

poly p_One ( const ring  r)

Definition at line 1313 of file p_polys.cc.

1314{
1315 poly rc = p_Init(r);
1316 pSetCoeff0(rc,n_Init(1,r->cf));
1317 return rc;
1318}

◆ p_OneComp()

BOOLEAN p_OneComp ( poly  p,
const ring  r 
)

return TRUE if all monoms have the same component

Definition at line 1208 of file p_polys.cc.

1209{
1210 if(p!=NULL)
1211 {
1212 long i = p_GetComp(p, r);
1213 while (pNext(p)!=NULL)
1214 {
1215 pIter(p);
1216 if(i != p_GetComp(p, r)) return FALSE;
1217 }
1218 }
1219 return TRUE;
1220}

◆ p_PermPoly()

poly p_PermPoly ( poly  p,
const int *  perm,
const ring  OldRing,
const ring  dst,
nMapFunc  nMap,
const int *  par_perm = NULL,
int  OldPar = 0,
BOOLEAN  use_mult = FALSE 
)

Definition at line 4130 of file p_polys.cc.

4132{
4133#if 0
4134 p_Test(p, oldRing);
4135 PrintS("p_PermPoly::p: "); p_Write(p, oldRing, oldRing);
4136#endif
4137 const int OldpVariables = rVar(oldRing);
4138 poly result = NULL;
4139 poly result_last = NULL;
4140 poly aq = NULL; /* the map coefficient */
4141 poly qq; /* the mapped monomial */
4142 assume(dst != NULL);
4143 assume(dst->cf != NULL);
4144 #ifdef HAVE_PLURAL
4145 poly tmp_mm=p_One(dst);
4146 #endif
4147 while (p != NULL)
4148 {
4149 // map the coefficient
4150 if ( ((OldPar == 0) || (par_perm == NULL) || rField_is_GF(oldRing) || (nMap==ndCopyMap))
4151 && (nMap != NULL) )
4152 {
4153 qq = p_Init(dst);
4154 assume( nMap != NULL );
4155 number n = nMap(p_GetCoeff(p, oldRing), oldRing->cf, dst->cf);
4156 n_Test (n,dst->cf);
4157 if ( nCoeff_is_algExt(dst->cf) )
4158 n_Normalize(n, dst->cf);
4159 p_GetCoeff(qq, dst) = n;// Note: n can be a ZERO!!!
4160 }
4161 else
4162 {
4163 qq = p_One(dst);
4164// aq = naPermNumber(p_GetCoeff(p, oldRing), par_perm, OldPar, oldRing); // no dst???
4165// poly n_PermNumber(const number z, const int *par_perm, const int P, const ring src, const ring dst)
4166 aq = n_PermNumber(p_GetCoeff(p, oldRing), par_perm, OldPar, oldRing, dst);
4167 p_Test(aq, dst);
4168 if ( nCoeff_is_algExt(dst->cf) )
4169 p_Normalize(aq,dst);
4170 if (aq == NULL)
4171 p_SetCoeff(qq, n_Init(0, dst->cf),dst); // Very dirty trick!!!
4172 p_Test(aq, dst);
4173 }
4174 if (rRing_has_Comp(dst))
4175 p_SetComp(qq, p_GetComp(p, oldRing), dst);
4176 if ( n_IsZero(pGetCoeff(qq), dst->cf) )
4177 {
4178 p_LmDelete(&qq,dst);
4179 qq = NULL;
4180 }
4181 else
4182 {
4183 // map pars:
4184 int mapped_to_par = 0;
4185 for(int i = 1; i <= OldpVariables; i++)
4186 {
4187 int e = p_GetExp(p, i, oldRing);
4188 if (e != 0)
4189 {
4190 if (perm==NULL)
4191 p_SetExp(qq, i, e, dst);
4192 else if (perm[i]>0)
4193 {
4194 #ifdef HAVE_PLURAL
4195 if(use_mult)
4196 {
4197 p_SetExp(tmp_mm,perm[i],e,dst);
4198 p_Setm(tmp_mm,dst);
4199 qq=p_Mult_mm(qq,tmp_mm,dst);
4200 p_SetExp(tmp_mm,perm[i],0,dst);
4201
4202 }
4203 else
4204 #endif
4205 p_AddExp(qq,perm[i], e/*p_GetExp( p,i,oldRing)*/, dst);
4206 }
4207 else if (perm[i]<0)
4208 {
4209 number c = p_GetCoeff(qq, dst);
4210 if (rField_is_GF(dst))
4211 {
4212 assume( dst->cf->extRing == NULL );
4213 number ee = n_Param(1, dst);
4214 number eee;
4215 n_Power(ee, e, &eee, dst->cf); //nfDelete(ee,dst);
4216 ee = n_Mult(c, eee, dst->cf);
4217 //nfDelete(c,dst);nfDelete(eee,dst);
4218 pSetCoeff0(qq,ee);
4219 }
4220 else if (nCoeff_is_Extension(dst->cf))
4221 {
4222 const int par = -perm[i];
4223 assume( par > 0 );
4224// WarnS("longalg missing 3");
4225#if 1
4226 const coeffs C = dst->cf;
4227 assume( C != NULL );
4228 const ring R = C->extRing;
4229 assume( R != NULL );
4230 assume( par <= rVar(R) );
4231 poly pcn; // = (number)c
4232 assume( !n_IsZero(c, C) );
4233 if( nCoeff_is_algExt(C) )
4234 pcn = (poly) c;
4235 else // nCoeff_is_transExt(C)
4236 pcn = NUM((fraction)c);
4237 if (pNext(pcn) == NULL) // c->z
4238 p_AddExp(pcn, -perm[i], e, R);
4239 else /* more difficult: we have really to multiply: */
4240 {
4241 poly mmc = p_ISet(1, R);
4242 p_SetExp(mmc, -perm[i], e, R);
4243 p_Setm(mmc, R);
4244 number nnc;
4245 // convert back to a number: number nnc = mmc;
4246 if( nCoeff_is_algExt(C) )
4247 nnc = (number) mmc;
4248 else // nCoeff_is_transExt(C)
4249 nnc = ntInit(mmc, C);
4250 p_GetCoeff(qq, dst) = n_Mult((number)c, nnc, C);
4251 n_Delete((number *)&c, C);
4252 n_Delete((number *)&nnc, C);
4253 }
4254 mapped_to_par=1;
4255#endif
4256 }
4257 }
4258 else
4259 {
4260 /* this variable maps to 0 !*/
4261 p_LmDelete(&qq, dst);
4262 break;
4263 }
4264 }
4265 }
4266 if ( mapped_to_par && (qq!= NULL) && nCoeff_is_algExt(dst->cf) )
4267 {
4268 number n = p_GetCoeff(qq, dst);
4269 n_Normalize(n, dst->cf);
4270 p_GetCoeff(qq, dst) = n;
4271 }
4272 }
4273 pIter(p);
4274
4275#if 0
4276 p_Test(aq,dst);
4277 PrintS("aq: "); p_Write(aq, dst, dst);
4278#endif
4279
4280
4281#if 1
4282 if (qq!=NULL)
4283 {
4284 p_Setm(qq,dst);
4285
4286 p_Test(aq,dst);
4287 p_Test(qq,dst);
4288
4289#if 0
4290 PrintS("qq: "); p_Write(qq, dst, dst);
4291#endif
4292
4293 if (aq!=NULL)
4294 qq=p_Mult_q(aq,qq,dst);
4295 aq = qq;
4296 while (pNext(aq) != NULL) pIter(aq);
4297 if (result_last==NULL)
4298 {
4299 result=qq;
4300 }
4301 else
4302 {
4303 pNext(result_last)=qq;
4304 }
4305 result_last=aq;
4306 aq = NULL;
4307 }
4308 else if (aq!=NULL)
4309 {
4310 p_Delete(&aq,dst);
4311 }
4312 }
4313 result=p_SortAdd(result,dst);
4314#else
4315 // if (qq!=NULL)
4316 // {
4317 // pSetm(qq);
4318 // pTest(qq);
4319 // pTest(aq);
4320 // if (aq!=NULL) qq=pMult(aq,qq);
4321 // aq = qq;
4322 // while (pNext(aq) != NULL) pIter(aq);
4323 // pNext(aq) = result;
4324 // aq = NULL;
4325 // result = qq;
4326 // }
4327 // else if (aq!=NULL)
4328 // {
4329 // pDelete(&aq);
4330 // }
4331 //}
4332 //p = result;
4333 //result = NULL;
4334 //while (p != NULL)
4335 //{
4336 // qq = p;
4337 // pIter(p);
4338 // qq->next = NULL;
4339 // result = pAdd(result, qq);
4340 //}
4341#endif
4342 p_Test(result,dst);
4343#if 0
4344 p_Test(result,dst);
4345 PrintS("result: "); p_Write(result,dst,dst);
4346#endif
4347 #ifdef HAVE_PLURAL
4348 p_LmDelete(&tmp_mm,dst);
4349 #endif
4350 return result;
4351}
static FORCE_INLINE number n_Param(const int iParameter, const coeffs r)
return the (iParameter^th) parameter as a NEW number NOTE: parameter numbering: 1....
Definition: coeffs.h:780
static FORCE_INLINE BOOLEAN nCoeff_is_Extension(const coeffs r)
Definition: coeffs.h:843
number ndCopyMap(number a, const coeffs src, const coeffs dst)
Definition: numbers.cc:291
static FORCE_INLINE void n_Power(number a, int b, number *res, const coeffs r)
fill res with the power a^b
Definition: coeffs.h:629
poly n_PermNumber(const number z, const int *par_perm, const int, const ring src, const ring dst)
Definition: p_polys.cc:4027
poly p_ISet(long i, const ring r)
returns the poly representing the integer i
Definition: p_polys.cc:1297
poly p_One(const ring r)
Definition: p_polys.cc:1313
void p_Write(poly p, ring lmRing, ring tailRing)
Definition: polys0.cc:342
static poly p_Mult_mm(poly p, poly m, const ring r)
Definition: p_polys.h:1049
static poly p_SortAdd(poly p, const ring r, BOOLEAN revert=FALSE)
Definition: p_polys.h:1217
static BOOLEAN rField_is_GF(const ring r)
Definition: ring.h:521
number ntInit(long i, const coeffs cf)
Definition: transext.cc:704

◆ p_Plus_mm_Mult_qq() [1/2]

static poly p_Plus_mm_Mult_qq ( poly  p,
poly  m,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1203 of file p_polys.h.

1204{
1205 int lp = 0, lq = 0;
1206 return p_Plus_mm_Mult_qq(p, m, q, lp, lq, r);
1207}
static poly p_Plus_mm_Mult_qq(poly p, poly m, poly q, int &lp, int lq, const ring r)
Definition: p_polys.h:1181

◆ p_Plus_mm_Mult_qq() [2/2]

static poly p_Plus_mm_Mult_qq ( poly  p,
poly  m,
poly  q,
int &  lp,
int  lq,
const ring  r 
)
inlinestatic

Definition at line 1181 of file p_polys.h.

1183{
1184#ifdef HAVE_PLURAL
1185 if (rIsPluralRing(r))
1186 return nc_p_Plus_mm_Mult_qq(p, m, q, lp, lq, r);
1187#endif
1188
1189// this should be implemented more efficiently
1190 poly res;
1191 int shorter;
1192 number n_old = pGetCoeff(m);
1193 number n_neg = n_Copy(n_old, r->cf);
1194 n_neg = n_InpNeg(n_neg, r->cf);
1195 pSetCoeff0(m, n_neg);
1196 res = r->p_Procs->p_Minus_mm_Mult_qq(p, m, q, shorter, NULL, r);
1197 lp = (lp + lq) - shorter;
1198 pSetCoeff0(m, n_old);
1199 n_Delete(&n_neg, r->cf);
1200 return res;
1201}
poly nc_p_Plus_mm_Mult_qq(poly p, const poly m, const poly q, int &lp, const int, const ring r)
Definition: old.gring.cc:168
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
Definition: ring.h:400

◆ p_PolyDiv()

poly p_PolyDiv ( poly &  p,
const poly  divisor,
const BOOLEAN  needResult,
const ring  r 
)

assumes that p and divisor are univariate polynomials in r, mentioning the same variable; assumes divisor != NULL; p may be NULL; assumes a global monomial ordering in r; performs polynomial division of p by divisor:

  • afterwards p contains the remainder of the division, i.e., p_before = result * divisor + p_afterwards;
  • if needResult == TRUE, then the method computes and returns 'result', otherwise NULL is returned (This parametrization can be used when one is only interested in the remainder of the division. In this case, the method will be slightly faster.) leaves divisor unmodified

Definition at line 1870 of file p_polys.cc.

1871{
1872 assume(divisor != NULL);
1873 if (p == NULL) return NULL;
1874
1875 poly result = NULL;
1876 number divisorLC = p_GetCoeff(divisor, r);
1877 int divisorLE = p_GetExp(divisor, 1, r);
1878 while ((p != NULL) && (p_Deg(p, r) >= p_Deg(divisor, r)))
1879 {
1880 /* determine t = LT(p) / LT(divisor) */
1881 poly t = p_ISet(1, r);
1882 number c = n_Div(p_GetCoeff(p, r), divisorLC, r->cf);
1883 n_Normalize(c,r->cf);
1884 p_SetCoeff(t, c, r);
1885 int e = p_GetExp(p, 1, r) - divisorLE;
1886 p_SetExp(t, 1, e, r);
1887 p_Setm(t, r);
1888 if (needResult) result = p_Add_q(result, p_Copy(t, r), r);
1889 p = p_Add_q(p, p_Neg(p_Mult_q(t, p_Copy(divisor, r), r), r), r);
1890 }
1891 return result;
1892}
long p_Deg(poly a, const ring r)
Definition: p_polys.cc:587

◆ p_Power()

poly p_Power ( poly  p,
int  i,
const ring  r 
)

Definition at line 2197 of file p_polys.cc.

2198{
2199 poly rc=NULL;
2200
2201 if (i==0)
2202 {
2203 p_Delete(&p,r);
2204 return p_One(r);
2205 }
2206
2207 if(p!=NULL)
2208 {
2209 if ( (i > 0) && ((unsigned long ) i > (r->bitmask))
2210 #ifdef HAVE_SHIFTBBA
2211 && (!rIsLPRing(r))
2212 #endif
2213 )
2214 {
2215 Werror("exponent %d is too large, max. is %ld",i,r->bitmask);
2216 return NULL;
2217 }
2218 switch (i)
2219 {
2220// cannot happen, see above
2221// case 0:
2222// {
2223// rc=pOne();
2224// pDelete(&p);
2225// break;
2226// }
2227 case 1:
2228 rc=p;
2229 break;
2230 case 2:
2231 rc=p_Mult_q(p_Copy(p,r),p,r);
2232 break;
2233 default:
2234 if (i < 0)
2235 {
2236 p_Delete(&p,r);
2237 return NULL;
2238 }
2239 else
2240 {
2241#ifdef HAVE_PLURAL
2242 if (rIsNCRing(r)) /* in the NC case nothing helps :-( */
2243 {
2244 int j=i;
2245 rc = p_Copy(p,r);
2246 while (j>1)
2247 {
2248 rc = p_Mult_q(p_Copy(p,r),rc,r);
2249 j--;
2250 }
2251 p_Delete(&p,r);
2252 return rc;
2253 }
2254#endif
2255 rc = pNext(p);
2256 if (rc == NULL)
2257 return p_MonPower(p,i,r);
2258 /* else: binom ?*/
2259 int char_p=rInternalChar(r);
2260 if ((char_p>0) && (i>char_p)
2261 && ((rField_is_Zp(r,char_p)
2262 || (rField_is_Zp_a(r,char_p)))))
2263 {
2264 poly h=p_Pow_charp(p_Copy(p,r),char_p,r);
2265 int rest=i-char_p;
2266 while (rest>=char_p)
2267 {
2268 rest-=char_p;
2269 h=p_Mult_q(h,p_Pow_charp(p_Copy(p,r),char_p,r),r);
2270 }
2271 poly res=h;
2272 if (rest>0)
2273 res=p_Mult_q(p_Power(p_Copy(p,r),rest,r),h,r);
2274 p_Delete(&p,r);
2275 return res;
2276 }
2277 if ((pNext(rc) != NULL)
2278 || rField_is_Ring(r)
2279 )
2280 return p_Pow(p,i,r);
2281 if ((char_p==0) || (i<=char_p))
2282 return p_TwoMonPower(p,i,r);
2283 return p_Pow(p,i,r);
2284 }
2285 /*end default:*/
2286 }
2287 }
2288 return rc;
2289}
poly p_Power(poly p, int i, const ring r)
Definition: p_polys.cc:2197
static poly p_TwoMonPower(poly p, int exp, const ring r)
Definition: p_polys.cc:2106
static poly p_Pow_charp(poly p, int i, const ring r)
Definition: p_polys.cc:2185
static poly p_MonPower(poly p, int exp, const ring r)
Definition: p_polys.cc:2000
static poly p_Pow(poly p, int i, const ring r)
Definition: p_polys.cc:2171
void Werror(const char *fmt,...)
Definition: reporter.cc:189
static int rInternalChar(const ring r)
Definition: ring.h:689
static BOOLEAN rIsLPRing(const ring r)
Definition: ring.h:411

◆ p_ProjectiveUnique()

void p_ProjectiveUnique ( poly  p,
const ring  r 
)

Definition at line 3143 of file p_polys.cc.

3144{
3145 if( ph == NULL )
3146 return;
3147
3148 const coeffs C = r->cf;
3149
3150 number h;
3151 poly p;
3152
3153 if (nCoeff_is_Ring(C))
3154 {
3155 p_ContentForGB(ph,r);
3156 if(!n_GreaterZero(pGetCoeff(ph),C)) ph = p_Neg(ph,r);
3157 assume( n_GreaterZero(pGetCoeff(ph),C) );
3158 return;
3159 }
3160
3162 {
3163 if(!n_GreaterZero(pGetCoeff(ph),C)) ph = p_Neg(ph,r);
3164 return;
3165 }
3166 p = ph;
3167
3168 assume(p != NULL);
3169
3170 if(pNext(p)==NULL) // a monomial
3171 {
3172 p_SetCoeff(p, n_Init(1, C), r);
3173 return;
3174 }
3175
3176 assume(pNext(p)!=NULL);
3177
3178 if(!nCoeff_is_Q(C) && !nCoeff_is_transExt(C))
3179 {
3180 h = p_GetCoeff(p, C);
3181 number hInv = n_Invers(h, C);
3182 pIter(p);
3183 while (p!=NULL)
3184 {
3185 p_SetCoeff(p, n_Mult(p_GetCoeff(p, C), hInv, C), r);
3186 pIter(p);
3187 }
3188 n_Delete(&hInv, C);
3189 p = ph;
3190 p_SetCoeff(p, n_Init(1, C), r);
3191 }
3192
3193 p_Cleardenom(ph, r); //removes also Content
3194
3195
3196 /* normalize ph over a transcendental extension s.t.
3197 lead (ph) is > 0 if extRing->cf == Q
3198 or lead (ph) is monic if extRing->cf == Zp*/
3199 if (nCoeff_is_transExt(C))
3200 {
3201 p= ph;
3202 h= p_GetCoeff (p, C);
3203 fraction f = (fraction) h;
3204 number n=p_GetCoeff (NUM (f),C->extRing->cf);
3205 if (rField_is_Q (C->extRing))
3206 {
3207 if (!n_GreaterZero(n,C->extRing->cf))
3208 {
3209 p=p_Neg (p,r);
3210 }
3211 }
3212 else if (rField_is_Zp(C->extRing))
3213 {
3214 if (!n_IsOne (n, C->extRing->cf))
3215 {
3216 n=n_Invers (n,C->extRing->cf);
3217 nMapFunc nMap;
3218 nMap= n_SetMap (C->extRing->cf, C);
3219 number ninv= nMap (n,C->extRing->cf, C);
3220 p=__p_Mult_nn (p, ninv, r);
3221 n_Delete (&ninv, C);
3222 n_Delete (&n, C->extRing->cf);
3223 }
3224 }
3225 p= ph;
3226 }
3227
3228 return;
3229}
static FORCE_INLINE BOOLEAN nCoeff_is_Ring(const coeffs r)
Definition: coeffs.h:727
static FORCE_INLINE BOOLEAN nCoeff_is_Zp(const coeffs r)
Definition: coeffs.h:797
poly p_Cleardenom(poly p, const ring r)
Definition: p_polys.cc:2845

◆ p_Read()

const char * p_Read ( const char *  s,
poly &  p,
const ring  r 
)

Definition at line 1370 of file p_polys.cc.

1371{
1372 if (r==NULL) { rc=NULL;return st;}
1373 int i,j;
1374 rc = p_Init(r);
1375 const char *s = n_Read(st,&(p_GetCoeff(rc, r)),r->cf);
1376 if (s==st)
1377 /* i.e. it does not start with a coeff: test if it is a ringvar*/
1378 {
1379 j = r_IsRingVar(s,r->names,r->N);
1380 if (j >= 0)
1381 {
1382 p_IncrExp(rc,1+j,r);
1383 while (*s!='\0') s++;
1384 goto done;
1385 }
1386 }
1387 while (*s!='\0')
1388 {
1389 char ss[2];
1390 ss[0] = *s++;
1391 ss[1] = '\0';
1392 j = r_IsRingVar(ss,r->names,r->N);
1393 if (j >= 0)
1394 {
1395 const char *s_save=s;
1396 s = eati(s,&i);
1397 if (((unsigned long)i) > r->bitmask/2)
1398 {
1399 // exponent to large: it is not a monomial
1400 p_LmDelete(&rc,r);
1401 return s_save;
1402 }
1403 p_AddExp(rc,1+j, (long)i, r);
1404 }
1405 else
1406 {
1407 // 1st char of is not a varname
1408 // We return the parsed polynomial nevertheless. This is needed when
1409 // we are parsing coefficients in a rational function field.
1410 s--;
1411 break;
1412 }
1413 }
1414done:
1415 if (n_IsZero(pGetCoeff(rc),r->cf)) p_LmDelete(&rc,r);
1416 else
1417 {
1418#ifdef HAVE_PLURAL
1419 // in super-commutative ring
1420 // squares of anti-commutative variables are zeroes!
1421 if(rIsSCA(r))
1422 {
1423 const unsigned int iFirstAltVar = scaFirstAltVar(r);
1424 const unsigned int iLastAltVar = scaLastAltVar(r);
1425
1426 assume(rc != NULL);
1427
1428 for(unsigned int k = iFirstAltVar; k <= iLastAltVar; k++)
1429 if( p_GetExp(rc, k, r) > 1 )
1430 {
1431 p_LmDelete(&rc, r);
1432 goto finish;
1433 }
1434 }
1435#endif
1436
1437 p_Setm(rc,r);
1438 }
1439finish:
1440 return s;
1441}
static FORCE_INLINE const char * n_Read(const char *s, number *a, const coeffs r)
!!! Recommendation: This method is too cryptic to be part of the user- !!! interface....
Definition: coeffs.h:595
const char * eati(const char *s, int *i)
Definition: reporter.cc:373
static bool rIsSCA(const ring r)
Definition: nc.h:190
static long p_IncrExp(poly p, int v, ring r)
Definition: p_polys.h:589
int r_IsRingVar(const char *n, char **names, int N)
Definition: ring.cc:212
static short scaLastAltVar(ring r)
Definition: sca.h:25
static short scaFirstAltVar(ring r)
Definition: sca.h:18

◆ p_Series()

poly p_Series ( int  n,
poly  p,
poly  u,
intvec w,
const ring  R 
)

Definition at line 4498 of file p_polys.cc.

4499{
4500 int *ww=iv2array(w,R);
4501 if(p!=NULL)
4502 {
4503 if(u==NULL)
4504 p=p_JetW(p,n,ww,R);
4505 else
4506 p=p_JetW(p_Mult_q(p,p_Invers(n-p_MinDeg(p,w,R),u,w,R),R),n,ww,R);
4507 }
4508 omFreeSize((ADDRESS)ww,(rVar(R)+1)*sizeof(int));
4509 return p;
4510}
static poly p_Invers(int n, poly u, intvec *w, const ring R)
Definition: p_polys.cc:4469
int p_MinDeg(poly p, intvec *w, const ring R)
Definition: p_polys.cc:4448
poly p_JetW(poly p, int m, int *w, const ring R)
Definition: p_polys.cc:4430
int * iv2array(intvec *iv, const ring R)
Definition: weight.cc:200

◆ p_SetCoeff()

static number p_SetCoeff ( poly  p,
number  n,
ring  r 
)
inlinestatic

Definition at line 410 of file p_polys.h.

411{
413 n_Delete(&(p->coef), r->cf);
414 (p)->coef=n;
415 return n;
416}

◆ p_SetComp()

static unsigned long p_SetComp ( poly  p,
unsigned long  c,
ring  r 
)
inlinestatic

Definition at line 245 of file p_polys.h.

246{
248 if (r->pCompIndex>=0) __p_GetComp(p,r) = c;
249 return c;
250}

◆ p_SetCompP() [1/2]

static void p_SetCompP ( poly  p,
int  i,
ring  lmRing,
ring  tailRing 
)
inlinestatic

Definition at line 279 of file p_polys.h.

280{
281 if (p != NULL)
282 {
283 p_SetComp(p, i, lmRing);
284 p_SetmComp(p, lmRing);
285 p_SetCompP(pNext(p), i, tailRing);
286 }
287}

◆ p_SetCompP() [2/2]

static void p_SetCompP ( poly  p,
int  i,
ring  r 
)
inlinestatic

Definition at line 252 of file p_polys.h.

253{
254 if (p != NULL)
255 {
256 p_Test(p, r);
258 {
259 do
260 {
261 p_SetComp(p, i, r);
262 p_SetmComp(p, r);
263 pIter(p);
264 }
265 while (p != NULL);
266 }
267 else
268 {
269 do
270 {
271 p_SetComp(p, i, r);
272 pIter(p);
273 }
274 while(p != NULL);
275 }
276 }
277}
BOOLEAN rOrd_SetCompRequiresSetm(const ring r)
return TRUE if p_SetComp requires p_Setm
Definition: ring.cc:1993

◆ p_SetExp() [1/3]

static long p_SetExp ( poly  p,
const int  v,
const long  e,
const ring  r 
)
inlinestatic

set v^th exponent for a monomial

Definition at line 580 of file p_polys.h.

581{
583 pAssume2(v>0 && v <= r->N);
584 pAssume2(r->VarOffset[v] != -1);
585 return p_SetExp(p, e, r->bitmask, r->VarOffset[v]);
586}

◆ p_SetExp() [2/3]

static long p_SetExp ( poly  p,
const long  e,
const ring  r,
const int  VarOffset 
)
inlinestatic

Definition at line 560 of file p_polys.h.

561{
563 pAssume2(VarOffset != -1);
564 return p_SetExp(p, e, r->bitmask, VarOffset);
565}

◆ p_SetExp() [3/3]

static unsigned long p_SetExp ( poly  p,
const unsigned long  e,
const unsigned long  iBitmask,
const int  VarOffset 
)
inlinestatic

set a single variable exponent @Note: VarOffset encodes the position in p->exp

See also
p_GetExp

Definition at line 486 of file p_polys.h.

487{
488 pAssume2(e>=0);
489 pAssume2(e<=iBitmask);
490 pAssume2((VarOffset >> (24 + 6)) == 0);
491
492 // shift e to the left:
493 REGISTER int shift = VarOffset >> 24;
494 unsigned long ee = e << shift /*(VarOffset >> 24)*/;
495 // find the bits in the exponent vector
496 REGISTER int offset = (VarOffset & 0xffffff);
497 // clear the bits in the exponent vector:
498 p->exp[offset] &= ~( iBitmask << shift );
499 // insert e with |
500 p->exp[ offset ] |= ee;
501 return e;
502}

◆ p_SetExpV()

static void p_SetExpV ( poly  p,
int *  ev,
const ring  r 
)
inlinestatic

Definition at line 1542 of file p_polys.h.

1543{
1545 for (unsigned j = r->N; j!=0; j--)
1546 p_SetExp(p, j, ev[j], r);
1547
1548 if(ev[0]!=0) p_SetComp(p, ev[0],r);
1549 p_Setm(p, r);
1550}

◆ p_SetExpVL()

static void p_SetExpVL ( poly  p,
int64 ev,
const ring  r 
)
inlinestatic

Definition at line 1551 of file p_polys.h.

1552{
1554 for (unsigned j = r->N; j!=0; j--)
1555 p_SetExp(p, j, ev[j-1], r);
1556 p_SetComp(p, 0,r);
1557
1558 p_Setm(p, r);
1559}

◆ p_SetExpVLV()

static void p_SetExpVLV ( poly  p,
int64 ev,
int64  comp,
const ring  r 
)
inlinestatic

Definition at line 1562 of file p_polys.h.

1563{
1565 for (unsigned j = r->N; j!=0; j--)
1566 p_SetExp(p, j, ev[j-1], r);
1567 p_SetComp(p, comp,r);
1568
1569 p_Setm(p, r);
1570}
int comp(const CanonicalForm &A, const CanonicalForm &B)
compare polynomials

◆ p_Setm()

static void p_Setm ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 231 of file p_polys.h.

232{
233 p_CheckRing2(r);
234 r->p_Setm(p, r);
235}

◆ p_SetModDeg()

void p_SetModDeg ( intvec w,
ring  r 
)

Definition at line 3673 of file p_polys.cc.

3674{
3675 if (w!=NULL)
3676 {
3677 r->pModW = w;
3678 pOldFDeg = r->pFDeg;
3679 pOldLDeg = r->pLDeg;
3680 pOldLexOrder = r->pLexOrder;
3682 r->pLexOrder = TRUE;
3683 }
3684 else
3685 {
3686 r->pModW = NULL;
3688 r->pLexOrder = pOldLexOrder;
3689 }
3690}
STATIC_VAR pLDegProc pOldLDeg
Definition: p_polys.cc:3661
void pRestoreDegProcs(ring r, pFDegProc old_FDeg, pLDegProc old_lDeg)
Definition: p_polys.cc:3649
STATIC_VAR BOOLEAN pOldLexOrder
Definition: p_polys.cc:3662
STATIC_VAR pFDegProc pOldFDeg
Definition: p_polys.cc:3660
void pSetDegProcs(ring r, pFDegProc new_FDeg, pLDegProc new_lDeg)
Definition: p_polys.cc:3637
static long pModDeg(poly p, ring r)
Definition: p_polys.cc:3664

◆ p_ShallowCopyDelete()

static poly p_ShallowCopyDelete ( poly  p,
const ring  r,
omBin  bin 
)
inlinestatic

Definition at line 926 of file p_polys.h.

927{
929 pAssume2(omSizeWOfBin(r->PolyBin) == omSizeWOfBin(bin));
930 return r->p_Procs->p_ShallowCopyDelete(p, r, bin);
931}

◆ p_ShallowDelete()

void p_ShallowDelete ( poly *  p,
const ring  r 
)

◆ p_Shift()

void p_Shift ( poly *  p,
int  i,
const ring  r 
)

shifts components of the vector p by i

Definition at line 4706 of file p_polys.cc.

4707{
4708 poly qp1 = *p,qp2 = *p;/*working pointers*/
4709 int j = p_MaxComp(*p,r),k = p_MinComp(*p,r);
4710
4711 if (j+i < 0) return ;
4712 BOOLEAN toPoly= ((j == -i) && (j == k));
4713 while (qp1 != NULL)
4714 {
4715 if (toPoly || (__p_GetComp(qp1,r)+i > 0))
4716 {
4717 p_AddComp(qp1,i,r);
4718 p_SetmComp(qp1,r);
4719 qp2 = qp1;
4720 pIter(qp1);
4721 }
4722 else
4723 {
4724 if (qp2 == *p)
4725 {
4726 pIter(*p);
4727 p_LmDelete(&qp2,r);
4728 qp2 = *p;
4729 qp1 = *p;
4730 }
4731 else
4732 {
4733 qp2->next = qp1->next;
4734 if (qp1!=NULL) p_LmDelete(&qp1,r);
4735 qp1 = qp2->next;
4736 }
4737 }
4738 }
4739}
return
Definition: cfGcdAlgExt.cc:218
static unsigned long p_AddComp(poly p, unsigned long v, ring r)
Definition: p_polys.h:445

◆ p_SimpleContent()

void p_SimpleContent ( poly  p,
int  s,
const ring  r 
)

Definition at line 2564 of file p_polys.cc.

2565{
2566 if(TEST_OPT_CONTENTSB) return;
2567 if (ph==NULL) return;
2568 if (pNext(ph)==NULL)
2569 {
2570 p_SetCoeff(ph,n_Init(1,r->cf),r);
2571 return;
2572 }
2573 if (pNext(pNext(ph))==NULL)
2574 {
2575 return;
2576 }
2577 if (!(rField_is_Q(r))
2578 && (!rField_is_Q_a(r))
2579 && (!rField_is_Zp_a(r))
2580 && (!rField_is_Z(r))
2581 )
2582 {
2583 return;
2584 }
2585 number d=p_InitContent(ph,r);
2586 number h=d;
2587 if (n_Size(d,r->cf)<=smax)
2588 {
2589 n_Delete(&h,r->cf);
2590 //if (TEST_OPT_PROT) PrintS("G");
2591 return;
2592 }
2593
2594 poly p=ph;
2595 if (smax==1) smax=2;
2596 while (p!=NULL)
2597 {
2598#if 1
2599 d=n_SubringGcd(h,pGetCoeff(p),r->cf);
2600 n_Delete(&h,r->cf);
2601 h = d;
2602#else
2603 n_InpGcd(h,pGetCoeff(p),r->cf);
2604#endif
2605 if(n_Size(h,r->cf)<smax)
2606 {
2607 //if (TEST_OPT_PROT) PrintS("g");
2608 n_Delete(&h,r->cf);
2609 return;
2610 }
2611 pIter(p);
2612 }
2613 p = ph;
2614 if (!n_GreaterZero(pGetCoeff(p),r->cf)) h=n_InpNeg(h,r->cf);
2615 if(n_IsOne(h,r->cf))
2616 {
2617 n_Delete(&h,r->cf);
2618 return;
2619 }
2620 if (TEST_OPT_PROT) PrintS("c");
2621 while (p!=NULL)
2622 {
2623#if 1
2624 d = n_ExactDiv(pGetCoeff(p),h,r->cf);
2625 p_SetCoeff(p,d,r);
2626#else
2627 STATISTIC(n_ExactDiv); nlInpExactDiv(pGetCoeff(p),h,r->cf); // no such function... ?
2628#endif
2629 pIter(p);
2630 }
2631 n_Delete(&h,r->cf);
2632}
#define TEST_OPT_PROT
Definition: options.h:104

◆ p_Size()

int p_Size ( poly  p,
const ring  r 
)

Definition at line 3253 of file p_polys.cc.

3254{
3255 int count = 0;
3256 if (r->cf->has_simple_Alloc)
3257 return pLength(p);
3258 while ( p != NULL )
3259 {
3260 count+= n_Size( pGetCoeff( p ), r->cf );
3261 pIter( p );
3262 }
3263 return count;
3264}
int status int void size_t count
Definition: si_signals.h:59

◆ p_SortAdd()

static poly p_SortAdd ( poly  p,
const ring  r,
BOOLEAN  revert = FALSE 
)
inlinestatic

Definition at line 1217 of file p_polys.h.

1218{
1219 if (revert) p = pReverse(p);
1220 return sBucketSortAdd(p, r);
1221}
poly sBucketSortAdd(poly p, const ring r)
Sorts p with bucketSort: p may have equal monomials.
Definition: sbuckets.cc:368

◆ p_SortMerge()

static poly p_SortMerge ( poly  p,
const ring  r,
BOOLEAN  revert = FALSE 
)
inlinestatic

Definition at line 1227 of file p_polys.h.

1228{
1229 if (revert) p = pReverse(p);
1230 return sBucketSortMerge(p, r);
1231}
poly sBucketSortMerge(poly p, const ring r)
Sorts p with bucketSort: assumes all monomials of p are different.
Definition: sbuckets.cc:332

◆ p_Split()

void p_Split ( poly  p,
poly *  r 
)

Definition at line 1320 of file p_polys.cc.

1321{
1322 *h=pNext(p);
1323 pNext(p)=NULL;
1324}

◆ p_String() [1/2]

char * p_String ( poly  p,
ring  lmRing,
ring  tailRing 
)

Definition at line 322 of file polys0.cc.

323{
324 StringSetS("");
325 p_String0(p, lmRing, tailRing);
326 return StringEndS();
327}
void p_String0(poly p, ring lmRing, ring tailRing)
print p according to ShortOut in lmRing & tailRing
Definition: polys0.cc:223
void StringSetS(const char *st)
Definition: reporter.cc:128
char * StringEndS()
Definition: reporter.cc:151

◆ p_String() [2/2]

static char * p_String ( poly  p,
ring  p_ring 
)
inlinestatic

Definition at line 1238 of file p_polys.h.

1239{
1240 return p_String(p, p_ring, p_ring);
1241}
char * p_String(poly p, ring lmRing, ring tailRing)
Definition: polys0.cc:322

◆ p_String0() [1/2]

void p_String0 ( poly  p,
ring  lmRing,
ring  tailRing 
)

print p according to ShortOut in lmRing & tailRing

Definition at line 223 of file polys0.cc.

224{
225 if (p == NULL)
226 {
227 StringAppendS("0");
228 return;
229 }
230 p_Normalize(p,lmRing);
231 if ((n_GetChar(lmRing->cf) == 0)
232 && (nCoeff_is_transExt(lmRing->cf)))
233 p_Normalize(p,lmRing); /* Manual/absfact.tst */
234#ifdef HAVE_SHIFTBBA
235 if(lmRing->isLPring)
236 {
237 if ((p_GetComp(p, lmRing) == 0) || (!lmRing->VectorOut))
238 {
239 writemonLP(p,0, lmRing);
240 p = pNext(p);
241 while (p!=NULL)
242 {
243 assume((p->coef==NULL)||(!n_IsZero(p->coef,tailRing->cf)));
244 if ((p->coef==NULL)||n_GreaterZero(p->coef,tailRing->cf))
245 StringAppendS("+");
246 writemonLP(p,0, tailRing);
247 p = pNext(p);
248 }
249 return;
250 }
251 }
252 else
253#endif
254 {
255 if ((p_GetComp(p, lmRing) == 0) || (!lmRing->VectorOut))
256 {
257 writemon(p,0, lmRing);
258 p = pNext(p);
259 while (p!=NULL)
260 {
261 assume((p->coef==NULL)||(!n_IsZero(p->coef,tailRing->cf)));
262 if ((p->coef==NULL)||n_GreaterZero(p->coef,tailRing->cf))
263 StringAppendS("+");
264 writemon(p,0, tailRing);
265 p = pNext(p);
266 }
267 return;
268 }
269 }
270
271 long k = 1;
272 StringAppendS("[");
273#ifdef HAVE_SHIFTBBA
274 if(lmRing->isLPring)
275 {
276 loop
277 {
278 while (k < p_GetComp(p,lmRing))
279 {
280 StringAppendS("0,");
281 k++;
282 }
283 writemonLP(p,k,lmRing);
284 pIter(p);
285 while ((p!=NULL) && (k == p_GetComp(p, tailRing)))
286 {
287 if (n_GreaterZero(p->coef,tailRing->cf)) StringAppendS("+");
288 writemonLP(p,k,tailRing);
289 pIter(p);
290 }
291 if (p == NULL) break;
292 StringAppendS(",");
293 k++;
294 }
295 }
296 else
297#endif
298 {
299 loop
300 {
301 while (k < p_GetComp(p,lmRing))
302 {
303 StringAppendS("0,");
304 k++;
305 }
306 writemon(p,k,lmRing);
307 pIter(p);
308 while ((p!=NULL) && (k == p_GetComp(p, tailRing)))
309 {
310 if (n_GreaterZero(p->coef,tailRing->cf)) StringAppendS("+");
311 writemon(p,k,tailRing);
312 pIter(p);
313 }
314 if (p == NULL) break;
315 StringAppendS(",");
316 k++;
317 }
318 }
319 StringAppendS("]");
320}
static void writemon(poly p, int ko, const ring r)
Definition: polys0.cc:24
static void writemonLP(poly p, int ko, const ring r)
Definition: polys0.cc:104
void StringAppendS(const char *st)
Definition: reporter.cc:107

◆ p_String0() [2/2]

static void p_String0 ( poly  p,
ring  p_ring 
)
inlinestatic

Definition at line 1242 of file p_polys.h.

1243{
1244 p_String0(p, p_ring, p_ring);
1245}
void p_String0(poly p, ring lmRing, ring tailRing)
print p according to ShortOut in lmRing & tailRing
Definition: polys0.cc:223

◆ p_String0Long()

void p_String0Long ( const poly  p,
ring  lmRing,
ring  tailRing 
)

print p in a long way

print p in a long way

Definition at line 203 of file polys0.cc.

204{
205 // NOTE: the following (non-thread-safe!) UGLYNESS
206 // (changing naRing->ShortOut for a while) is due to Hans!
207 // Just think of other ring using the VERY SAME naRing and possible
208 // side-effects...
209 // but this is not a problem: i/o is not thread-safe anyway.
210 const BOOLEAN bLMShortOut = rShortOut(lmRing);
211 const BOOLEAN bTAILShortOut = rShortOut(tailRing);
212
213 lmRing->ShortOut = FALSE;
214 tailRing->ShortOut = FALSE;
215
216 p_String0(p, lmRing, tailRing);
217
218 lmRing->ShortOut = bLMShortOut;
219 tailRing->ShortOut = bTAILShortOut;
220}
static BOOLEAN rShortOut(const ring r)
Definition: ring.h:581

◆ p_String0Short()

void p_String0Short ( const poly  p,
ring  lmRing,
ring  tailRing 
)

print p in a short way, if possible

print p in a short way, if possible

Definition at line 184 of file polys0.cc.

185{
186 // NOTE: the following (non-thread-safe!) UGLYNESS
187 // (changing naRing->ShortOut for a while) is due to Hans!
188 // Just think of other ring using the VERY SAME naRing and possible
189 // side-effects...
190 const BOOLEAN bLMShortOut = rShortOut(lmRing);
191 const BOOLEAN bTAILShortOut = rShortOut(tailRing);
192
193 lmRing->ShortOut = rCanShortOut(lmRing);
194 tailRing->ShortOut = rCanShortOut(tailRing);
195
196 p_String0(p, lmRing, tailRing);
197
198 lmRing->ShortOut = bLMShortOut;
199 tailRing->ShortOut = bTAILShortOut;
200}
static BOOLEAN rCanShortOut(const ring r)
Definition: ring.h:586

◆ p_Sub()

poly p_Sub ( poly  a,
poly  b,
const ring  r 
)

Definition at line 1990 of file p_polys.cc.

1991{
1992 return p_Add_q(p1, p_Neg(p2,r),r);
1993}

◆ p_SubComp()

static unsigned long p_SubComp ( poly  p,
unsigned long  v,
ring  r 
)
inlinestatic

Definition at line 451 of file p_polys.h.

452{
455 _pPolyAssume2(__p_GetComp(p,r) >= v,p,r);
456 return __p_GetComp(p,r) -= v;
457}

◆ p_SubExp()

static long p_SubExp ( poly  p,
int  v,
long  ee,
ring  r 
)
inlinestatic

Definition at line 611 of file p_polys.h.

612{
614 long e = p_GetExp(p,v,r);
615 pAssume2(e >= ee);
616 e -= ee;
617 return p_SetExp(p,v,e,r);
618}

◆ p_Subst()

poly p_Subst ( poly  p,
int  n,
poly  e,
const ring  r 
)

Definition at line 3958 of file p_polys.cc.

3959{
3960#ifdef HAVE_SHIFTBBA
3961 // also don't even use p_Subst0 for Letterplace
3962 if (rIsLPRing(r))
3963 {
3964 poly subst = p_LPSubst(p, n, e, r);
3965 p_Delete(&p, r);
3966 return subst;
3967 }
3968#endif
3969
3970 if (e == NULL) return p_Subst0(p, n,r);
3971
3972 if (p_IsConstant(e,r))
3973 {
3974 if (n_IsOne(pGetCoeff(e),r->cf)) return p_Subst1(p,n,r);
3975 else return p_Subst2(p, n, pGetCoeff(e),r);
3976 }
3977
3978#ifdef HAVE_PLURAL
3979 if (rIsPluralRing(r))
3980 {
3981 return nc_pSubst(p,n,e,r);
3982 }
3983#endif
3984
3985 int exponent,i;
3986 poly h, res, m;
3987 int *me,*ee;
3988 number nu,nu1;
3989
3990 me=(int *)omAlloc((rVar(r)+1)*sizeof(int));
3991 ee=(int *)omAlloc((rVar(r)+1)*sizeof(int));
3992 if (e!=NULL) p_GetExpV(e,ee,r);
3993 res=NULL;
3994 h=p;
3995 while (h!=NULL)
3996 {
3997 if ((e!=NULL) || (p_GetExp(h,n,r)==0))
3998 {
3999 m=p_Head(h,r);
4000 p_GetExpV(m,me,r);
4001 exponent=me[n];
4002 me[n]=0;
4003 for(i=rVar(r);i>0;i--)
4004 me[i]+=exponent*ee[i];
4005 p_SetExpV(m,me,r);
4006 if (e!=NULL)
4007 {
4008 n_Power(pGetCoeff(e),exponent,&nu,r->cf);
4009 nu1=n_Mult(pGetCoeff(m),nu,r->cf);
4010 n_Delete(&nu,r->cf);
4011 p_SetCoeff(m,nu1,r);
4012 }
4013 res=p_Add_q(res,m,r);
4014 }
4015 p_LmDelete(&h,r);
4016 }
4017 omFreeSize((ADDRESS)me,(rVar(r)+1)*sizeof(int));
4018 omFreeSize((ADDRESS)ee,(rVar(r)+1)*sizeof(int));
4019 return res;
4020}
CanonicalForm subst(const CanonicalForm &f, const CFList &a, const CFList &b, const CanonicalForm &Rstar, bool isFunctionField)
poly nc_pSubst(poly p, int n, poly e, const ring r)
substitute the n-th variable by e in p destroy p e is not a constant
Definition: old.gring.cc:3211
static poly p_Subst0(poly p, int n, const ring r)
Definition: p_polys.cc:3933
static poly p_Subst1(poly p, int n, const ring r)
Definition: p_polys.cc:3865
static poly p_Subst2(poly p, int n, number e, const ring r)
Definition: p_polys.cc:3892
poly p_LPSubst(poly p, int n, poly e, const ring r)
Definition: shiftop.cc:912

◆ p_TakeOutComp() [1/2]

poly p_TakeOutComp ( poly *  p,
int  k,
const ring  r 
)

Definition at line 3435 of file p_polys.cc.

3436{
3437 poly q = *p,qq=NULL,result = NULL;
3438
3439 if (q==NULL) return NULL;
3440 BOOLEAN use_setmcomp=rOrd_SetCompRequiresSetm(r);
3441 if (__p_GetComp(q,r)==k)
3442 {
3443 result = q;
3444 do
3445 {
3446 p_SetComp(q,0,r);
3447 if (use_setmcomp) p_SetmComp(q,r);
3448 qq = q;
3449 pIter(q);
3450 }
3451 while ((q!=NULL) && (__p_GetComp(q,r)==k));
3452 *p = q;
3453 pNext(qq) = NULL;
3454 }
3455 if (q==NULL) return result;
3456 if (__p_GetComp(q,r) > k)
3457 {
3458 p_SubComp(q,1,r);
3459 if (use_setmcomp) p_SetmComp(q,r);
3460 }
3461 poly pNext_q;
3462 while ((pNext_q=pNext(q))!=NULL)
3463 {
3464 if (__p_GetComp(pNext_q,r)==k)
3465 {
3466 if (result==NULL)
3467 {
3468 result = pNext_q;
3469 qq = result;
3470 }
3471 else
3472 {
3473 pNext(qq) = pNext_q;
3474 pIter(qq);
3475 }
3476 pNext(q) = pNext(pNext_q);
3477 pNext(qq) =NULL;
3478 p_SetComp(qq,0,r);
3479 if (use_setmcomp) p_SetmComp(qq,r);
3480 }
3481 else
3482 {
3483 /*pIter(q);*/ q=pNext_q;
3484 if (__p_GetComp(q,r) > k)
3485 {
3486 p_SubComp(q,1,r);
3487 if (use_setmcomp) p_SetmComp(q,r);
3488 }
3489 }
3490 }
3491 return result;
3492}

◆ p_TakeOutComp() [2/2]

void p_TakeOutComp ( poly *  p,
long  comp,
poly *  q,
int *  lq,
const ring  r 
)

Splits *p into two polys: *q which consists of all monoms with component == comp and *p of all other monoms *lq == pLength(*q) On return all components pf *q == 0.

Definition at line 3496 of file p_polys.cc.

3497{
3498 spolyrec pp, qq;
3499 poly p, q, p_prev;
3500 int l = 0;
3501
3502#ifndef SING_NDEBUG
3503 int lp = pLength(*r_p);
3504#endif
3505
3506 pNext(&pp) = *r_p;
3507 p = *r_p;
3508 p_prev = &pp;
3509 q = &qq;
3510
3511 while(p != NULL)
3512 {
3513 while (__p_GetComp(p,r) == comp)
3514 {
3515 pNext(q) = p;
3516 pIter(q);
3517 p_SetComp(p, 0,r);
3518 p_SetmComp(p,r);
3519 pIter(p);
3520 l++;
3521 if (p == NULL)
3522 {
3523 pNext(p_prev) = NULL;
3524 goto Finish;
3525 }
3526 }
3527 pNext(p_prev) = p;
3528 p_prev = p;
3529 pIter(p);
3530 }
3531
3532 Finish:
3533 pNext(q) = NULL;
3534 *r_p = pNext(&pp);
3535 *r_q = pNext(&qq);
3536 *lq = l;
3537#ifndef SING_NDEBUG
3538 assume(pLength(*r_p) + pLength(*r_q) == (unsigned)lp);
3539#endif
3540 p_Test(*r_p,r);
3541 p_Test(*r_q,r);
3542}

◆ p_Totaldegree()

static long p_Totaldegree ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 1505 of file p_polys.h.

1506{
1508 unsigned long s = p_GetTotalDegree(p->exp[r->VarL_Offset[0]],
1509 r,
1510 r->ExpPerLong);
1511 for (unsigned i=r->VarL_Size-1; i!=0; i--)
1512 {
1513 s += p_GetTotalDegree(p->exp[r->VarL_Offset[i]], r,r->ExpPerLong);
1514 }
1515 return (long)s;
1516}
static unsigned long p_GetTotalDegree(const unsigned long l, const ring r, const int number_of_exps)
Definition: p_polys.h:808

◆ p_Var()

int p_Var ( poly  mi,
const ring  r 
)

Definition at line 4656 of file p_polys.cc.

4657{
4658 if (m==NULL) return 0;
4659 if (pNext(m)!=NULL) return 0;
4660 int i,e=0;
4661 for (i=rVar(r); i>0; i--)
4662 {
4663 int exp=p_GetExp(m,i,r);
4664 if (exp==1)
4665 {
4666 if (e==0) e=i;
4667 else return 0;
4668 }
4669 else if (exp!=0)
4670 {
4671 return 0;
4672 }
4673 }
4674 return e;
4675}

◆ p_Vec2Array()

void p_Vec2Array ( poly  v,
poly *  p,
int  len,
const ring  r 
)

julia: vector to already allocated array (len=p_MaxComp(v,r))

julia: vector to already allocated array (len=p_MaxComp(v,r))

Definition at line 3595 of file p_polys.cc.

3596{
3597 poly h;
3598 int k;
3599
3600 for(int i=len-1;i>=0;i--) p[i]=NULL;
3601 while (v!=NULL)
3602 {
3603 h=p_Head(v,r);
3604 k=__p_GetComp(h,r);
3605 if (k>len) { Werror("wrong rank:%d, should be %d",len,k); }
3606 else
3607 {
3608 p_SetComp(h,0,r);
3609 p_Setm(h,r);
3610 pNext(h)=p[k-1];p[k-1]=h;
3611 }
3612 pIter(v);
3613 }
3614 for(int i=len-1;i>=0;i--)
3615 {
3616 if (p[i]!=NULL) p[i]=pReverse(p[i]);
3617 }
3618}

◆ p_Vec2Poly()

poly p_Vec2Poly ( poly  v,
int  k,
const ring  r 
)

Definition at line 3573 of file p_polys.cc.

3574{
3575 poly h;
3576 poly res=NULL;
3577 long unsigned kk=k;
3578
3579 while (v!=NULL)
3580 {
3581 if (__p_GetComp(v,r)==kk)
3582 {
3583 h=p_Head(v,r);
3584 p_SetComp(h,0,r);
3585 pNext(h)=res;res=h;
3586 }
3587 pIter(v);
3588 }
3589 if (res!=NULL) res=pReverse(res);
3590 return res;
3591}

◆ p_Vec2Polys()

void p_Vec2Polys ( poly  v,
poly **  p,
int *  len,
const ring  r 
)

Definition at line 3625 of file p_polys.cc.

3626{
3627 *len=p_MaxComp(v,r);
3628 if (*len==0) *len=1;
3629 *p=(poly*)omAlloc((*len)*sizeof(poly));
3630 p_Vec2Array(v,*p,*len,r);
3631}
void p_Vec2Array(poly v, poly *p, int len, const ring r)
vector to already allocated array (len>=p_MaxComp(v,r))
Definition: p_polys.cc:3595

◆ p_VectorHasUnit()

void p_VectorHasUnit ( poly  p,
int *  k,
int *  len,
const ring  r 
)

Definition at line 3402 of file p_polys.cc.

3403{
3404 poly q=p,qq;
3405 int j=0;
3406 long unsigned i;
3407
3408 *len = 0;
3409 while (q!=NULL)
3410 {
3411 if (p_LmIsConstantComp(q,r))
3412 {
3413 i = __p_GetComp(q,r);
3414 qq = p;
3415 while ((qq != q) && (__p_GetComp(qq,r) != i)) pIter(qq);
3416 if (qq == q)
3417 {
3418 j = 0;
3419 while (qq!=NULL)
3420 {
3421 if (__p_GetComp(qq,r)==i) j++;
3422 pIter(qq);
3423 }
3424 if ((*len == 0) || (j<*len))
3425 {
3426 *len = j;
3427 *k = i;
3428 }
3429 }
3430 }
3431 pIter(q);
3432 }
3433}

◆ p_VectorHasUnitB()

BOOLEAN p_VectorHasUnitB ( poly  p,
int *  k,
const ring  r 
)

Definition at line 3379 of file p_polys.cc.

3380{
3381 poly q=p,qq;
3382 long unsigned i;
3383
3384 while (q!=NULL)
3385 {
3386 if (p_LmIsConstantComp(q,r))
3387 {
3388 i = __p_GetComp(q,r);
3389 qq = p;
3390 while ((qq != q) && (__p_GetComp(qq,r) != i)) pIter(qq);
3391 if (qq == q)
3392 {
3393 *k = i;
3394 return TRUE;
3395 }
3396 }
3397 pIter(q);
3398 }
3399 return FALSE;
3400}

◆ p_WDegree()

long p_WDegree ( poly  p,
const ring  r 
)

Definition at line 714 of file p_polys.cc.

715{
716 if (r->firstwv==NULL) return p_Totaldegree(p, r);
718 int i;
719 long j =0;
720
721 for(i=1;i<=r->firstBlockEnds;i++)
722 j+=p_GetExp(p, i, r)*r->firstwv[i-1];
723
724 for (;i<=rVar(r);i++)
725 j+=p_GetExp(p,i, r)*p_Weight(i, r);
726
727 return j;
728}
int p_Weight(int i, const ring r)
Definition: p_polys.cc:705

◆ p_Weight()

int p_Weight ( int  c,
const ring  r 
)

Definition at line 705 of file p_polys.cc.

706{
707 if ((r->firstwv==NULL) || (i>r->firstBlockEnds))
708 {
709 return 1;
710 }
711 return r->firstwv[i-1];
712}

◆ p_WFirstTotalDegree()

long p_WFirstTotalDegree ( poly  p,
ring  r 
)

Definition at line 596 of file p_polys.cc.

597{
598 int i;
599 long sum = 0;
600
601 for (i=1; i<= r->firstBlockEnds; i++)
602 {
603 sum += p_GetExp(p, i, r)*r->firstwv[i-1];
604 }
605 return sum;
606}

◆ p_Write() [1/2]

void p_Write ( poly  p,
ring  lmRing,
ring  tailRing 
)

Definition at line 342 of file polys0.cc.

343{
344 p_Write0(p, lmRing, tailRing);
345 PrintLn();
346}
void p_Write0(poly p, ring lmRing, ring tailRing)
Definition: polys0.cc:332
void PrintLn()
Definition: reporter.cc:310

◆ p_Write() [2/2]

static void p_Write ( poly  p,
ring  p_ring 
)
inlinestatic

Definition at line 1246 of file p_polys.h.

1247{
1248 p_Write(p, p_ring, p_ring);
1249}

◆ p_Write0() [1/2]

void p_Write0 ( poly  p,
ring  lmRing,
ring  tailRing 
)

Definition at line 332 of file polys0.cc.

333{
334 char *s=p_String(p, lmRing, tailRing);
335 PrintS(s);
336 omFree(s);
337}
char * p_String(poly p, ring lmRing, ring tailRing)
Definition: polys0.cc:322

◆ p_Write0() [2/2]

static void p_Write0 ( poly  p,
ring  p_ring 
)
inlinestatic

Definition at line 1250 of file p_polys.h.

1251{
1252 p_Write0(p, p_ring, p_ring);
1253}
void p_Write0(poly p, ring lmRing, ring tailRing)
Definition: polys0.cc:332

◆ p_wrp() [1/2]

void p_wrp ( poly  p,
ring  lmRing,
ring  tailRing 
)

Definition at line 373 of file polys0.cc.

374{
375 poly r;
376
377 if (p==NULL) PrintS("NULL");
378 else if (pNext(p)==NULL) p_Write0(p, lmRing);
379 else
380 {
381 r = pNext(pNext(p));
382 pNext(pNext(p)) = NULL;
383 p_Write0(p, tailRing);
384 if (r!=NULL)
385 {
386 PrintS("+...");
387 pNext(pNext(p)) = r;
388 }
389 }
390}

◆ p_wrp() [2/2]

static void p_wrp ( poly  p,
ring  p_ring 
)
inlinestatic

Definition at line 1254 of file p_polys.h.

1255{
1256 p_wrp(p, p_ring, p_ring);
1257}
void p_wrp(poly p, ring lmRing, ring tailRing)
Definition: polys0.cc:373

◆ p_WTotaldegree()

long p_WTotaldegree ( poly  p,
const ring  r 
)

Definition at line 613 of file p_polys.cc.

614{
616 int i, k;
617 long j =0;
618
619 // iterate through each block:
620 for (i=0;r->order[i]!=0;i++)
621 {
622 int b0=r->block0[i];
623 int b1=r->block1[i];
624 switch(r->order[i])
625 {
626 case ringorder_M:
627 for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++)
628 { // in jedem block:
629 j+= p_GetExp(p,k,r)*r->wvhdl[i][k - b0 /*r->block0[i]*/]*r->OrdSgn;
630 }
631 break;
632 case ringorder_am:
633 b1=si_min(b1,r->N);
634 /* no break, continue as ringorder_a*/
635 case ringorder_a:
636 for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++)
637 { // only one line
638 j+= p_GetExp(p,k,r)*r->wvhdl[i][k - b0 /*r->block0[i]*/];
639 }
640 return j*r->OrdSgn;
641 case ringorder_wp:
642 case ringorder_ws:
643 case ringorder_Wp:
644 case ringorder_Ws:
645 for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++)
646 { // in jedem block:
647 j+= p_GetExp(p,k,r)*r->wvhdl[i][k - b0 /*r->block0[i]*/];
648 }
649 break;
650 case ringorder_lp:
651 case ringorder_ls:
652 case ringorder_rs:
653 case ringorder_dp:
654 case ringorder_ds:
655 case ringorder_Dp:
656 case ringorder_Ds:
657 case ringorder_rp:
658 for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++)
659 {
660 j+= p_GetExp(p,k,r);
661 }
662 break;
663 case ringorder_a64:
664 {
665 int64* w=(int64*)r->wvhdl[i];
666 for (k=0;k<=(b1 /*r->block1[i]*/ - b0 /*r->block0[i]*/);k++)
667 {
668 //there should be added a line which checks if w[k]>2^31
669 j+= p_GetExp(p,k+1, r)*(long)w[k];
670 }
671 //break;
672 return j;
673 }
674 case ringorder_c: /* nothing to do*/
675 case ringorder_C: /* nothing to do*/
676 case ringorder_S: /* nothing to do*/
677 case ringorder_s: /* nothing to do*/
678 case ringorder_IS: /* nothing to do */
679 case ringorder_unspec: /* to make clang happy, does not occur*/
680 case ringorder_no: /* to make clang happy, does not occur*/
681 case ringorder_L: /* to make clang happy, does not occur*/
682 case ringorder_aa: /* ignored by p_WTotaldegree*/
683 break;
684 /* no default: all orderings covered */
685 }
686 }
687 return j;
688}
for(j=0;j< factors.length();j++)
Definition: facHensel.cc:129
@ ringorder_a
Definition: ring.h:70
@ ringorder_am
Definition: ring.h:88
@ ringorder_a64
for int64 weights
Definition: ring.h:71
@ ringorder_rs
opposite of ls
Definition: ring.h:92
@ ringorder_C
Definition: ring.h:73
@ ringorder_S
S?
Definition: ring.h:75
@ ringorder_ds
Definition: ring.h:84
@ ringorder_Dp
Definition: ring.h:80
@ ringorder_unspec
Definition: ring.h:94
@ ringorder_L
Definition: ring.h:89
@ ringorder_Ds
Definition: ring.h:85
@ ringorder_dp
Definition: ring.h:78
@ ringorder_c
Definition: ring.h:72
@ ringorder_rp
Definition: ring.h:79
@ ringorder_aa
for idElimination, like a, except pFDeg, pWeigths ignore it
Definition: ring.h:91
@ ringorder_no
Definition: ring.h:69
@ ringorder_Wp
Definition: ring.h:82
@ ringorder_ws
Definition: ring.h:86
@ ringorder_Ws
Definition: ring.h:87
@ ringorder_IS
Induced (Schreyer) ordering.
Definition: ring.h:93
@ ringorder_ls
Definition: ring.h:83
@ ringorder_s
s?
Definition: ring.h:76
@ ringorder_wp
Definition: ring.h:81
@ ringorder_M
Definition: ring.h:74

◆ pEnlargeSet()

void pEnlargeSet ( poly **  p,
int  length,
int  increment 
)

Definition at line 3696 of file p_polys.cc.

3697{
3698 poly* h;
3699
3700 if (increment==0) return;
3701 if (*p==NULL)
3702 {
3703 h=(poly*)omAlloc0(increment*sizeof(poly));
3704 }
3705 else
3706 {
3707 h=(poly*)omReallocSize((poly*)*p,l*sizeof(poly),(l+increment)*sizeof(poly));
3708 if (increment>0)
3709 {
3710 memset(&(h[l]),0,increment*sizeof(poly));
3711 }
3712 }
3713 *p=h;
3714}
#define omReallocSize(addr, o_size, size)
Definition: omAllocDecl.h:220

◆ pHaveCommonMonoms()

BOOLEAN pHaveCommonMonoms ( poly  p,
poly  q 
)

Definition at line 178 of file pDebug.cc.

179{
180 while (p != NULL)
181 {
182 if (pIsMonomOf(q, p))
183 {
184 return TRUE;
185 }
186 pIter(p);
187 }
188 return FALSE;
189}
BOOLEAN pIsMonomOf(poly p, poly m)
Definition: pDebug.cc:168

◆ pIsMonomOf()

BOOLEAN pIsMonomOf ( poly  p,
poly  m 
)

Definition at line 168 of file pDebug.cc.

169{
170 if (m == NULL) return TRUE;
171 while (p != NULL)
172 {
173 if (p == m) return TRUE;
174 pIter(p);
175 }
176 return FALSE;
177}

◆ pLDeg0()

long pLDeg0 ( poly  p,
int *  l,
ring  r 
)

Definition at line 739 of file p_polys.cc.

740{
741 p_CheckPolyRing(p, r);
742 long unsigned k= p_GetComp(p, r);
743 int ll=1;
744
745 if (k > 0)
746 {
747 while ((pNext(p)!=NULL) && (__p_GetComp(pNext(p), r)==k))
748 {
749 pIter(p);
750 ll++;
751 }
752 }
753 else
754 {
755 while (pNext(p)!=NULL)
756 {
757 pIter(p);
758 ll++;
759 }
760 }
761 *l=ll;
762 return r->pFDeg(p, r);
763}

◆ pLDeg0c()

long pLDeg0c ( poly  p,
int *  l,
ring  r 
)

Definition at line 770 of file p_polys.cc.

771{
772 assume(p!=NULL);
773 p_Test(p,r);
774 p_CheckPolyRing(p, r);
775 long o;
776 int ll=1;
777
778 if (! rIsSyzIndexRing(r))
779 {
780 while (pNext(p) != NULL)
781 {
782 pIter(p);
783 ll++;
784 }
785 o = r->pFDeg(p, r);
786 }
787 else
788 {
789 long unsigned curr_limit = rGetCurrSyzLimit(r);
790 poly pp = p;
791 while ((p=pNext(p))!=NULL)
792 {
793 if (__p_GetComp(p, r)<=curr_limit/*syzComp*/)
794 ll++;
795 else break;
796 pp = p;
797 }
798 p_Test(pp,r);
799 o = r->pFDeg(pp, r);
800 }
801 *l=ll;
802 return o;
803}

◆ pLDeg1()

long pLDeg1 ( poly  p,
int *  l,
ring  r 
)

Definition at line 841 of file p_polys.cc.

842{
843 p_CheckPolyRing(p, r);
844 long unsigned k= p_GetComp(p, r);
845 int ll=1;
846 long t,max;
847
848 max=r->pFDeg(p, r);
849 if (k > 0)
850 {
851 while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k))
852 {
853 t=r->pFDeg(p, r);
854 if (t>max) max=t;
855 ll++;
856 }
857 }
858 else
859 {
860 while ((p=pNext(p))!=NULL)
861 {
862 t=r->pFDeg(p, r);
863 if (t>max) max=t;
864 ll++;
865 }
866 }
867 *l=ll;
868 return max;
869}

◆ pLDeg1_Deg()

long pLDeg1_Deg ( poly  p,
int *  l,
ring  r 
)

Definition at line 910 of file p_polys.cc.

911{
912 assume(r->pFDeg == p_Deg);
913 p_CheckPolyRing(p, r);
914 long unsigned k= p_GetComp(p, r);
915 int ll=1;
916 long t,max;
917
918 max=p_GetOrder(p, r);
919 if (k > 0)
920 {
921 while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k))
922 {
923 t=p_GetOrder(p, r);
924 if (t>max) max=t;
925 ll++;
926 }
927 }
928 else
929 {
930 while ((p=pNext(p))!=NULL)
931 {
932 t=p_GetOrder(p, r);
933 if (t>max) max=t;
934 ll++;
935 }
936 }
937 *l=ll;
938 return max;
939}

◆ pLDeg1_Totaldegree()

long pLDeg1_Totaldegree ( poly  p,
int *  l,
ring  r 
)

Definition at line 975 of file p_polys.cc.

976{
977 p_CheckPolyRing(p, r);
978 long unsigned k= p_GetComp(p, r);
979 int ll=1;
980 long t,max;
981
982 max=p_Totaldegree(p, r);
983 if (k > 0)
984 {
985 while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k))
986 {
987 t=p_Totaldegree(p, r);
988 if (t>max) max=t;
989 ll++;
990 }
991 }
992 else
993 {
994 while ((p=pNext(p))!=NULL)
995 {
996 t=p_Totaldegree(p, r);
997 if (t>max) max=t;
998 ll++;
999 }
1000 }
1001 *l=ll;
1002 return max;
1003}

◆ pLDeg1_WFirstTotalDegree()

long pLDeg1_WFirstTotalDegree ( poly  p,
int *  l,
ring  r 
)

Definition at line 1038 of file p_polys.cc.

1039{
1040 p_CheckPolyRing(p, r);
1041 long unsigned k= p_GetComp(p, r);
1042 int ll=1;
1043 long t,max;
1044
1046 if (k > 0)
1047 {
1048 while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k))
1049 {
1050 t=p_WFirstTotalDegree(p, r);
1051 if (t>max) max=t;
1052 ll++;
1053 }
1054 }
1055 else
1056 {
1057 while ((p=pNext(p))!=NULL)
1058 {
1059 t=p_WFirstTotalDegree(p, r);
1060 if (t>max) max=t;
1061 ll++;
1062 }
1063 }
1064 *l=ll;
1065 return max;
1066}
long p_WFirstTotalDegree(poly p, const ring r)
Definition: p_polys.cc:596

◆ pLDeg1c()

long pLDeg1c ( poly  p,
int *  l,
ring  r 
)

Definition at line 877 of file p_polys.cc.

878{
879 p_CheckPolyRing(p, r);
880 int ll=1;
881 long t,max;
882
883 max=r->pFDeg(p, r);
884 if (rIsSyzIndexRing(r))
885 {
886 long unsigned limit = rGetCurrSyzLimit(r);
887 while ((p=pNext(p))!=NULL)
888 {
889 if (__p_GetComp(p, r)<=limit)
890 {
891 if ((t=r->pFDeg(p, r))>max) max=t;
892 ll++;
893 }
894 else break;
895 }
896 }
897 else
898 {
899 while ((p=pNext(p))!=NULL)
900 {
901 if ((t=r->pFDeg(p, r))>max) max=t;
902 ll++;
903 }
904 }
905 *l=ll;
906 return max;
907}

◆ pLDeg1c_Deg()

long pLDeg1c_Deg ( poly  p,
int *  l,
ring  r 
)

Definition at line 941 of file p_polys.cc.

942{
943 assume(r->pFDeg == p_Deg);
944 p_CheckPolyRing(p, r);
945 int ll=1;
946 long t,max;
947
948 max=p_GetOrder(p, r);
949 if (rIsSyzIndexRing(r))
950 {
951 long unsigned limit = rGetCurrSyzLimit(r);
952 while ((p=pNext(p))!=NULL)
953 {
954 if (__p_GetComp(p, r)<=limit)
955 {
956 if ((t=p_GetOrder(p, r))>max) max=t;
957 ll++;
958 }
959 else break;
960 }
961 }
962 else
963 {
964 while ((p=pNext(p))!=NULL)
965 {
966 if ((t=p_GetOrder(p, r))>max) max=t;
967 ll++;
968 }
969 }
970 *l=ll;
971 return max;
972}

◆ pLDeg1c_Totaldegree()

long pLDeg1c_Totaldegree ( poly  p,
int *  l,
ring  r 
)

Definition at line 1005 of file p_polys.cc.

1006{
1007 p_CheckPolyRing(p, r);
1008 int ll=1;
1009 long t,max;
1010
1011 max=p_Totaldegree(p, r);
1012 if (rIsSyzIndexRing(r))
1013 {
1014 long unsigned limit = rGetCurrSyzLimit(r);
1015 while ((p=pNext(p))!=NULL)
1016 {
1017 if (__p_GetComp(p, r)<=limit)
1018 {
1019 if ((t=p_Totaldegree(p, r))>max) max=t;
1020 ll++;
1021 }
1022 else break;
1023 }
1024 }
1025 else
1026 {
1027 while ((p=pNext(p))!=NULL)
1028 {
1029 if ((t=p_Totaldegree(p, r))>max) max=t;
1030 ll++;
1031 }
1032 }
1033 *l=ll;
1034 return max;
1035}

◆ pLDeg1c_WFirstTotalDegree()

long pLDeg1c_WFirstTotalDegree ( poly  p,
int *  l,
ring  r 
)

Definition at line 1068 of file p_polys.cc.

1069{
1070 p_CheckPolyRing(p, r);
1071 int ll=1;
1072 long t,max;
1073
1075 if (rIsSyzIndexRing(r))
1076 {
1077 long unsigned limit = rGetCurrSyzLimit(r);
1078 while ((p=pNext(p))!=NULL)
1079 {
1080 if (__p_GetComp(p, r)<=limit)
1081 {
1082 if ((t=p_Totaldegree(p, r))>max) max=t;
1083 ll++;
1084 }
1085 else break;
1086 }
1087 }
1088 else
1089 {
1090 while ((p=pNext(p))!=NULL)
1091 {
1092 if ((t=p_Totaldegree(p, r))>max) max=t;
1093 ll++;
1094 }
1095 }
1096 *l=ll;
1097 return max;
1098}

◆ pLDegb()

long pLDegb ( poly  p,
int *  l,
ring  r 
)

Definition at line 811 of file p_polys.cc.

812{
813 p_CheckPolyRing(p, r);
814 long unsigned k= p_GetComp(p, r);
815 long o = r->pFDeg(p, r);
816 int ll=1;
817
818 if (k != 0)
819 {
820 while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k))
821 {
822 ll++;
823 }
824 }
825 else
826 {
827 while ((p=pNext(p)) !=NULL)
828 {
829 ll++;
830 }
831 }
832 *l=ll;
833 return o;
834}

◆ pLength()

static int pLength ( poly  a)
inlinestatic

Definition at line 188 of file p_polys.h.

189{
190 int l = 0;
191 while (a!=NULL)
192 {
193 pIter(a);
194 l++;
195 }
196 return l;
197}

◆ pp_DivideM()

poly pp_DivideM ( poly  a,
poly  b,
const ring  r 
)

Definition at line 1633 of file p_polys.cc.

1634{
1635 if (a==NULL) { return NULL; }
1636 // TODO: better implementation without copying a,b
1637 return p_DivideM(p_Copy(a,r),p_Head(b,r),r);
1638}
poly p_DivideM(poly a, poly b, const ring r)
Definition: p_polys.cc:1578

◆ pp_Jet()

poly pp_Jet ( poly  p,
int  m,
const ring  R 
)

Definition at line 4358 of file p_polys.cc.

4359{
4360 poly r=NULL;
4361 poly t=NULL;
4362
4363 while (p!=NULL)
4364 {
4365 if (p_Totaldegree(p,R)<=m)
4366 {
4367 if (r==NULL)
4368 r=p_Head(p,R);
4369 else
4370 if (t==NULL)
4371 {
4372 pNext(r)=p_Head(p,R);
4373 t=pNext(r);
4374 }
4375 else
4376 {
4377 pNext(t)=p_Head(p,R);
4378 pIter(t);
4379 }
4380 }
4381 pIter(p);
4382 }
4383 return r;
4384}

◆ pp_JetW()

poly pp_JetW ( poly  p,
int  m,
int *  w,
const ring  R 
)

Definition at line 4403 of file p_polys.cc.

4404{
4405 poly r=NULL;
4406 poly t=NULL;
4407 while (p!=NULL)
4408 {
4409 if (totaldegreeWecart_IV(p,R,w)<=m)
4410 {
4411 if (r==NULL)
4412 r=p_Head(p,R);
4413 else
4414 if (t==NULL)
4415 {
4416 pNext(r)=p_Head(p,R);
4417 t=pNext(r);
4418 }
4419 else
4420 {
4421 pNext(t)=p_Head(p,R);
4422 pIter(t);
4423 }
4424 }
4425 pIter(p);
4426 }
4427 return r;
4428}

◆ pp_mm_Mult()

static poly pp_mm_Mult ( poly  p,
poly  m,
const ring  r 
)
inlinestatic

Definition at line 1039 of file p_polys.h.

1040{
1041 if (p==NULL) return NULL;
1042 if (p_LmIsConstant(m, r))
1043 return __pp_Mult_nn(p, pGetCoeff(m), r);
1044 else
1045 return r->p_Procs->pp_mm_Mult(p, m, r);
1046}
#define __pp_Mult_nn(p, n, r)
Definition: p_polys.h:1000

◆ pp_Mult_Coeff_mm_DivSelect() [1/2]

static poly pp_Mult_Coeff_mm_DivSelect ( poly  p,
const poly  m,
const ring  r 
)
inlinestatic

Definition at line 1088 of file p_polys.h.

1089{
1090 int shorter;
1091 return r->p_Procs->pp_Mult_Coeff_mm_DivSelect(p, m, shorter, r);
1092}

◆ pp_Mult_Coeff_mm_DivSelect() [2/2]

static poly pp_Mult_Coeff_mm_DivSelect ( poly  p,
int &  lp,
const poly  m,
const ring  r 
)
inlinestatic

Definition at line 1096 of file p_polys.h.

1097{
1098 int shorter;
1099 poly pp = r->p_Procs->pp_Mult_Coeff_mm_DivSelect(p, m, shorter, r);
1100 lp -= shorter;
1101 return pp;
1102}

◆ pp_Mult_mm()

static poly pp_Mult_mm ( poly  p,
poly  m,
const ring  r 
)
inlinestatic

Definition at line 1029 of file p_polys.h.

1030{
1031 if (p==NULL) return NULL;
1032 if (p_LmIsConstant(m, r))
1033 return __pp_Mult_nn(p, pGetCoeff(m), r);
1034 else
1035 return r->p_Procs->pp_Mult_mm(p, m, r);
1036}

◆ pp_Mult_nn()

static poly pp_Mult_nn ( poly  p,
number  n,
const ring  r 
)
inlinestatic

Definition at line 990 of file p_polys.h.

991{
992 if (p==NULL) return NULL;
993 if (n_IsOne(n, r->cf))
994 return p_Copy(p, r);
995 else if (n_IsZero(n, r->cf))
996 return NULL;
997 else
998 return r->p_Procs->pp_Mult_nn(p, n, r);
999}

◆ pp_Mult_qq()

static poly pp_Mult_qq ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1149 of file p_polys.h.

1150{
1151 if (p == NULL || q == NULL) return NULL;
1152
1153 if (pNext(p) == NULL)
1154 {
1155 return r->p_Procs->pp_mm_Mult(q, p, r);
1156 }
1157
1158 if (pNext(q) == NULL)
1159 {
1160 return r->p_Procs->pp_Mult_mm(p, q, r);
1161 }
1162
1163 poly qq = q;
1164 if (p == q)
1165 qq = p_Copy(q, r);
1166
1167 poly res;
1168#if defined(HAVE_PLURAL) || defined(HAVE_SHIFTBBA)
1169 if (rIsNCRing(r))
1170 res = _nc_pp_Mult_qq(p, qq, r);
1171 else
1172#endif
1173 res = _p_Mult_q(p, qq, 1, r);
1174
1175 if (qq != q)
1176 p_Delete(&qq, r);
1177 return res;
1178}
poly _nc_pp_Mult_qq(const poly p, const poly q, const ring r)
general NC-multiplication without destruction
Definition: old.gring.cc:254

◆ pRestoreDegProcs()

void pRestoreDegProcs ( ring  r,
pFDegProc  old_FDeg,
pLDegProc  old_lDeg 
)

Definition at line 3649 of file p_polys.cc.

3650{
3651 assume(old_FDeg != NULL && old_lDeg != NULL);
3652 r->pFDeg = old_FDeg;
3653 r->pLDeg = old_lDeg;
3654}

◆ pReverse()

static poly pReverse ( poly  p)
inlinestatic

Definition at line 333 of file p_polys.h.

334{
335 if (p == NULL || pNext(p) == NULL) return p;
336
337 poly q = pNext(p), // == pNext(p)
338 qn;
339 pNext(p) = NULL;
340 do
341 {
342 qn = pNext(q);
343 pNext(q) = p;
344 p = q;
345 q = qn;
346 }
347 while (qn != NULL);
348 return p;
349}

◆ pSetDegProcs()

void pSetDegProcs ( ring  r,
pFDegProc  new_FDeg,
pLDegProc  new_lDeg = NULL 
)

Definition at line 3637 of file p_polys.cc.

3638{
3639 assume(new_FDeg != NULL);
3640 r->pFDeg = new_FDeg;
3641
3642 if (new_lDeg == NULL)
3643 new_lDeg = r->pLDegOrig;
3644
3645 r->pLDeg = new_lDeg;
3646}