My Project
Loading...
Searching...
No Matches
kstd1.cc
Go to the documentation of this file.
1/****************************************
2* Computer Algebra System SINGULAR *
3****************************************/
4/*
5* ABSTRACT:
6*/
7
8// TODO: why the following is here instead of mod2.h???
9
10
11// define if buckets should be used
12#define MORA_USE_BUCKETS
13
14#define PRE_INTEGER_CHECK 0
15
16#include "kernel/mod2.h"
17
18#include "misc/options.h"
19#include "misc/intvec.h"
20
21#include "polys/weight.h"
22#include "kernel/polys.h"
23
28#include "kernel/ideals.h"
29
30//#include "ipprint.h"
31
32#ifdef HAVE_PLURAL
33#include "polys/nc/nc.h"
34#include "polys/nc/sca.h"
35#include "kernel/GBEngine/nc.h"
36#endif
37
39
40#ifdef HAVE_SHIFTBBA
41#include "polys/shiftop.h"
42#endif
43
44/* the list of all options which give a warning by test */
46 |Sy_bit(OPT_REDSB) /* 1 */
47 |Sy_bit(OPT_NOT_SUGAR) /* 3 */
48 |Sy_bit(OPT_INTERRUPT) /* 4 */
49 |Sy_bit(OPT_SUGARCRIT) /* 5 */
52 |Sy_bit(OPT_FASTHC) /* 10 */
53 |Sy_bit(OPT_INTSTRATEGY) /* 26 */
54 |Sy_bit(OPT_INFREDTAIL) /* 28 */
55 |Sy_bit(OPT_NOTREGULARITY) /* 30 */
56 |Sy_bit(OPT_WEIGHTM); /* 31 */
57
58/* the list of all options which may be used by option and test */
59/* definition of ALL options: libpolys/misc/options.h */
61 |Sy_bit(1)
62 |Sy_bit(2) // obachman 10/00: replaced by notBucket
63 |Sy_bit(3)
64 |Sy_bit(4)
65 |Sy_bit(5)
66 |Sy_bit(6)
67// |Sy_bit(7) obachman 11/00 tossed: 12/00 used for redThrough
68 |Sy_bit(7) // OPT_REDTHROUGH
69 |Sy_bit(8) // obachman 11/00 tossed -> motsak 2011 experimental: OPT_NO_SYZ_MINIM
70 |Sy_bit(9)
71 |Sy_bit(10)
72 |Sy_bit(11)
73 |Sy_bit(12)
74 |Sy_bit(13)
75 |Sy_bit(14)
76 |Sy_bit(15)
77 |Sy_bit(16)
78 |Sy_bit(17)
79 |Sy_bit(18)
80 |Sy_bit(19)
81// |Sy_bit(20) obachman 11/00 tossed: 12/00 used for redOldStd
83 |Sy_bit(21)
84 |Sy_bit(22)
85 /*|Sy_bit(23)*/
86 /*|Sy_bit(24)*/
89 |Sy_bit(27)
90 |Sy_bit(28)
91 |Sy_bit(29)
92 |Sy_bit(30)
93 |Sy_bit(31);
94
95//static BOOLEAN posInLOldFlag;
96 /*FALSE, if posInL == posInL10*/
97// returns TRUE if mora should use buckets, false otherwise
98static BOOLEAN kMoraUseBucket(kStrategy strat);
99
100static void kOptimizeLDeg(pLDegProc ldeg, kStrategy strat)
101{
102// if (strat->ak == 0 && !rIsSyzIndexRing(currRing))
103 strat->length_pLength = TRUE;
104// else
105// strat->length_pLength = FALSE;
106
107 if ((ldeg == pLDeg0c /*&& !rIsSyzIndexRing(currRing)*/) ||
108 (ldeg == pLDeg0 && strat->ak == 0))
109 {
110 strat->LDegLast = TRUE;
111 }
112 else
113 {
114 strat->LDegLast = FALSE;
115 }
116}
117
118
119static int doRed (LObject* h, TObject* with,BOOLEAN intoT,kStrategy strat, bool redMoraNF)
120{
121 int ret;
122#if KDEBUG > 0
123 kTest_L(h);
124 kTest_T(with);
125#endif
126 // Hmmm ... why do we do this -- polys from T should already be normalized
128 with->pNorm();
129#ifdef KDEBUG
130 if (TEST_OPT_DEBUG)
131 {
132 PrintS("reduce ");h->wrp();PrintS(" with ");with->wrp();PrintLn();
133 }
134#endif
135 if (intoT)
136 {
137 // need to do it exactly like this: otherwise
138 // we might get errors
139 LObject L= *h;
140 L.Copy();
141 h->GetP();
142 h->length=h->pLength=pLength(h->p);
143 ret = ksReducePoly(&L, with, strat->kNoetherTail(), NULL, NULL, strat);
144 if (ret)
145 {
146 if (ret < 0) return ret;
147 if (h->tailRing != strat->tailRing)
148 h->ShallowCopyDelete(strat->tailRing,
150 strat->tailRing));
151 }
153 enterT_strong(*h,strat);
154 else
155 enterT(*h,strat);
156 *h = L;
157 }
158 else
159 ret = ksReducePoly(h, with, strat->kNoetherTail(), NULL, NULL, strat);
160#ifdef KDEBUG
161 if (TEST_OPT_DEBUG)
162 {
163 PrintS("to ");h->wrp();PrintLn();
164 }
165#endif
166 return ret;
167}
168
170{
171 int i,at,ei,li,ii;
172 int j = 0;
173 int pass = 0;
174 long d,reddeg;
175
176 d = h->GetpFDeg()+ h->ecart;
177 reddeg = strat->LazyDegree+d;
178 h->SetShortExpVector();
179 loop
180 {
181 j = kFindDivisibleByInT(strat, h);
182 if (j < 0)
183 {
184 if (strat->honey) h->SetLength(strat->length_pLength);
185 return 1;
186 }
187
188 ei = strat->T[j].ecart;
189 ii = j;
190
191 if (ei > h->ecart && ii < strat->tl)
192 {
193 unsigned long not_sev=~h->sev;
194 poly h_t= h->GetLmTailRing();
195 li = strat->T[j].length;
196 if (li<=0) li=strat->T[j].GetpLength();
197 // the polynomial to reduce with (up to the moment) is;
198 // pi with ecart ei and length li
199 // look for one with smaller ecart
200 i = j;
201 loop
202 {
203 /*- takes the first possible with respect to ecart -*/
204 i++;
205#if 1
206 if (i > strat->tl) break;
207 if (strat->T[i].length<=0) strat->T[i].GetpLength();
208 if ((strat->T[i].ecart < ei || (strat->T[i].ecart == ei &&
209 strat->T[i].length < li))
210 &&
211 p_LmShortDivisibleBy(strat->T[i].GetLmTailRing(), strat->sevT[i], h_t, not_sev, strat->tailRing))
212#else
213 j = kFindDivisibleByInT(strat, h, i);
214 if (j < 0) break;
215 i = j;
216 if (strat->T[i].ecart < ei || (strat->T[i].ecart == ei &&
217 strat->T[i].length < li))
218#endif
219 {
220 // the polynomial to reduce with is now
221 ii = i;
222 ei = strat->T[i].ecart;
223 if (ei <= h->ecart) break;
224 li = strat->T[i].length;
225 }
226 }
227 }
228
229 // end of search: have to reduce with pi
230 if (ei > h->ecart)
231 {
232 // It is not possible to reduce h with smaller ecart;
233 // if possible h goes to the lazy-set L,i.e
234 // if its position in L would be not the last one
235 strat->fromT = TRUE;
236 if (!TEST_OPT_REDTHROUGH && strat->Ll >= 0) /*- L is not empty -*/
237 {
238 h->SetLmCurrRing();
239 if (strat->honey && strat->posInLDependsOnLength)
240 h->SetLength(strat->length_pLength);
241 assume(h->FDeg == h->pFDeg());
242 at = strat->posInL(strat->L,strat->Ll,h,strat);
243 if (at <= strat->Ll)
244 {
245 /*- h will not become the next element to reduce -*/
246 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
247#ifdef KDEBUG
248 if (TEST_OPT_DEBUG) Print(" ecart too big; -> L%d\n",at);
249#endif
250 h->Clear();
251 strat->fromT = FALSE;
252 return -1;
253 }
254 }
255 }
256
257 // now we finally can reduce
258 doRed(h,&(strat->T[ii]),strat->fromT,strat,FALSE);
259 strat->fromT=FALSE;
260
261 // are we done ???
262 if (h->IsNull())
263 {
265 kDeleteLcm(h);
266 h->Clear();
267 return 0;
268 }
269 if (TEST_OPT_IDLIFT)
270 {
271 if (h->p!=NULL)
272 {
273 if(p_GetComp(h->p,currRing)>strat->syzComp)
274 {
275 h->Delete();
276 return 0;
277 }
278 }
279 else if (h->t_p!=NULL)
280 {
281 if(p_GetComp(h->t_p,strat->tailRing)>strat->syzComp)
282 {
283 h->Delete();
284 return 0;
285 }
286 }
287 }
288 #if 0
289 else if ((strat->syzComp > 0)&&(!TEST_OPT_REDTAIL_SYZ))
290 {
291 if (h->p!=NULL)
292 {
293 if(p_GetComp(h->p,currRing)>strat->syzComp)
294 {
295 return 1;
296 }
297 }
298 else if (h->t_p!=NULL)
299 {
300 if(p_GetComp(h->t_p,strat->tailRing)>strat->syzComp)
301 {
302 return 1;
303 }
304 }
305 }
306 #endif
307
308 // done ? NO!
309 h->SetShortExpVector();
310 h->SetpFDeg();
311 if (strat->honey)
312 {
313 if (ei <= h->ecart)
314 h->ecart = d-h->GetpFDeg();
315 else
316 h->ecart = d-h->GetpFDeg()+ei-h->ecart;
317 }
318 else
319 // this has the side effect of setting h->length
320 h->ecart = h->pLDeg(strat->LDegLast) - h->GetpFDeg();
321#if 0
322 if (strat->syzComp!=0)
323 {
324 if ((strat->syzComp>0) && (h->Comp() > strat->syzComp))
325 {
326 assume(h->MinComp() > strat->syzComp);
327 if (strat->honey) h->SetLength();
328#ifdef KDEBUG
329 if (TEST_OPT_DEBUG) PrintS(" > syzComp\n");
330#endif
331 return -2;
332 }
333 }
334#endif
335 /*- try to reduce the s-polynomial -*/
336 pass++;
337 d = h->GetpFDeg()+h->ecart;
338 /*
339 *test whether the polynomial should go to the lazyset L
340 *-if the degree jumps
341 *-if the number of pre-defined reductions jumps
342 */
343 if (!TEST_OPT_REDTHROUGH && (strat->Ll >= 0)
344 && ((d >= reddeg) || (pass > strat->LazyPass)))
345 {
346 h->SetLmCurrRing();
347 if (strat->honey && strat->posInLDependsOnLength)
348 h->SetLength(strat->length_pLength);
349 assume(h->FDeg == h->pFDeg());
350 at = strat->posInL(strat->L,strat->Ll,h,strat);
351 if (at <= strat->Ll)
352 {
353 int dummy=strat->sl;
354 if (kFindDivisibleByInS(strat, &dummy, h) < 0)
355 {
356 if (strat->honey && !strat->posInLDependsOnLength)
357 h->SetLength(strat->length_pLength);
358 return 1;
359 }
360 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
361#ifdef KDEBUG
362 if (TEST_OPT_DEBUG) Print(" degree jumped; ->L%d\n",at);
363#endif
364 h->Clear();
365 return -1;
366 }
367 }
368 else if ((TEST_OPT_PROT) && (strat->Ll < 0) && (d >= reddeg))
369 {
370 Print(".%ld",d);mflush();
371 reddeg = d+1;
372 if (h->pTotalDeg()+h->ecart >= (int)strat->tailRing->bitmask)
373 {
374 strat->overflow=TRUE;
375 //Print("OVERFLOW in redEcart d=%ld, max=%ld",d,strat->tailRing->bitmask);
376 h->GetP();
377 at = strat->posInL(strat->L,strat->Ll,h,strat);
378 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
379 h->Clear();
380 return -1;
381 }
382 }
383 }
384}
385
386#ifdef HAVE_RINGS
388{
389 int i,at,ei,li,ii;
390 int j = 0;
391 int pass = 0;
392 long d,reddeg;
393
394 d = h->GetpFDeg()+ h->ecart;
395 reddeg = strat->LazyDegree+d;
396 h->SetShortExpVector();
397 loop
398 {
399 j = kFindDivisibleByInT(strat, h);
400 if (j < 0)
401 {
402 // over ZZ: cleanup coefficients by complete reduction with monomials
403 postReduceByMon(h, strat);
404 if(h->p == NULL)
405 {
406 kDeleteLcm(h);
407 h->Clear();
408 return 0;
409 }
410 if (strat->honey) h->SetLength(strat->length_pLength);
411 if(strat->tl >= 0)
412 h->i_r1 = strat->tl;
413 else
414 h->i_r1 = -1;
415 if (h->GetLmTailRing() == NULL)
416 {
417 kDeleteLcm(h);
418 h->Clear();
419 return 0;
420 }
421 return 1;
422 }
423
424 ei = strat->T[j].ecart;
425 ii = j;
426 if (ei > h->ecart && ii < strat->tl)
427 {
428 li = strat->T[j].length;
429 // the polynomial to reduce with (up to the moment) is;
430 // pi with ecart ei and length li
431 // look for one with smaller ecart
432 i = j;
433 loop
434 {
435 /*- takes the first possible with respect to ecart -*/
436 i++;
437#if 1
438 if (i > strat->tl) break;
439 if ((strat->T[i].ecart < ei || (strat->T[i].ecart == ei &&
440 strat->T[i].length < li))
441 &&
442 p_LmShortDivisibleBy(strat->T[i].GetLmTailRing(), strat->sevT[i], h->GetLmTailRing(), ~h->sev, strat->tailRing)
443 &&
444 n_DivBy(h->p->coef,strat->T[i].p->coef,strat->tailRing->cf))
445#else
446 j = kFindDivisibleByInT(strat, h, i);
447 if (j < 0) break;
448 i = j;
449 if (strat->T[i].ecart < ei || (strat->T[i].ecart == ei &&
450 strat->T[i].length < li))
451#endif
452 {
453 // the polynomial to reduce with is now
454 ii = i;
455 ei = strat->T[i].ecart;
456 if (ei <= h->ecart) break;
457 li = strat->T[i].length;
458 }
459 }
460 }
461
462 // end of search: have to reduce with pi
463 if (ei > h->ecart)
464 {
465 // It is not possible to reduce h with smaller ecart;
466 // if possible h goes to the lazy-set L,i.e
467 // if its position in L would be not the last one
468 strat->fromT = TRUE;
469 if (!TEST_OPT_REDTHROUGH && strat->Ll >= 0) /*- L is not empty -*/
470 {
471 h->SetLmCurrRing();
472 if (strat->honey && strat->posInLDependsOnLength)
473 h->SetLength(strat->length_pLength);
474 assume(h->FDeg == h->pFDeg());
475 at = strat->posInL(strat->L,strat->Ll,h,strat);
476 if (at <= strat->Ll && pLmCmp(h->p, strat->L[strat->Ll].p) != 0 && !nEqual(h->p->coef, strat->L[strat->Ll].p->coef))
477 {
478 /*- h will not become the next element to reduce -*/
479 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
480 #ifdef KDEBUG
481 if (TEST_OPT_DEBUG) Print(" ecart too big; -> L%d\n",at);
482 #endif
483 h->Clear();
484 strat->fromT = FALSE;
485 return -1;
486 }
487 }
488 doRed(h,&(strat->T[ii]),strat->fromT,strat,TRUE);
489 }
490 else
491 {
492 // now we finally can reduce
493 doRed(h,&(strat->T[ii]),strat->fromT,strat,FALSE);
494 }
495 strat->fromT=FALSE;
496 // are we done ???
497 if (h->IsNull())
498 {
499 kDeleteLcm(h);
500 h->Clear();
501 return 0;
502 }
503
504 // NO!
505 h->SetShortExpVector();
506 h->SetpFDeg();
507 if (strat->honey)
508 {
509 if (ei <= h->ecart)
510 h->ecart = d-h->GetpFDeg();
511 else
512 h->ecart = d-h->GetpFDeg()+ei-h->ecart;
513 }
514 else
515 // this has the side effect of setting h->length
516 h->ecart = h->pLDeg(strat->LDegLast) - h->GetpFDeg();
517 /*- try to reduce the s-polynomial -*/
518 pass++;
519 d = h->GetpFDeg()+h->ecart;
520 /*
521 *test whether the polynomial should go to the lazyset L
522 *-if the degree jumps
523 *-if the number of pre-defined reductions jumps
524 */
525 if (!TEST_OPT_REDTHROUGH && (strat->Ll >= 0)
526 && ((d >= reddeg) || (pass > strat->LazyPass)))
527 {
528 h->SetLmCurrRing();
529 if (strat->honey && strat->posInLDependsOnLength)
530 h->SetLength(strat->length_pLength);
531 assume(h->FDeg == h->pFDeg());
532 at = strat->posInL(strat->L,strat->Ll,h,strat);
533 if (at <= strat->Ll)
534 {
535 int dummy=strat->sl;
536 if (kFindDivisibleByInS(strat, &dummy, h) < 0)
537 {
538 if (strat->honey && !strat->posInLDependsOnLength)
539 h->SetLength(strat->length_pLength);
540 return 1;
541 }
542 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
543#ifdef KDEBUG
544 if (TEST_OPT_DEBUG) Print(" degree jumped; ->L%d\n",at);
545#endif
546 h->Clear();
547 return -1;
548 }
549 }
550 else if ((TEST_OPT_PROT) && (strat->Ll < 0) && (d >= reddeg))
551 {
552 Print(".%ld",d);mflush();
553 reddeg = d+1;
554 if (h->pTotalDeg()+h->ecart >= (int)strat->tailRing->bitmask)
555 {
556 strat->overflow=TRUE;
557 //Print("OVERFLOW in redEcart d=%ld, max=%ld",d,strat->tailRing->bitmask);
558 h->GetP();
559 at = strat->posInL(strat->L,strat->Ll,h,strat);
560 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
561 h->Clear();
562 return -1;
563 }
564 }
565 }
566}
567
569{
570 int i,at,ei,li,ii;
571 int j = 0;
572 int pass = 0;
573 long d,reddeg;
574 int docoeffred = 0;
575 poly T0p = strat->T[0].p;
576 int T0ecart = strat->T[0].ecart;
577
578
579 d = h->GetpFDeg()+ h->ecart;
580 reddeg = strat->LazyDegree+d;
581 h->SetShortExpVector();
582 if ((strat->tl>=0)
583 &&strat->T[0].GetpFDeg() == 0
584 && strat->T[0].length <= 2)
585 {
586 docoeffred = 1;
587 }
588 loop
589 {
590 /* cut down the lead coefficients, only possible if the degree of
591 * T[0] is 0 (constant). This is only efficient if T[0] is short, thus
592 * we ask for the length of T[0] to be <= 2 */
593 if (docoeffred)
594 {
595 j = kTestDivisibleByT0_Z(strat, h);
596 if (j == 0 && n_DivBy(pGetCoeff(h->p), pGetCoeff(T0p), currRing->cf) == FALSE
597 && T0ecart <= h->ecart)
598 {
599 /* not(lc(reducer) | lc(poly)) && not(lc(poly) | lc(reducer))
600 * => we try to cut down the lead coefficient at least */
601 /* first copy T[j] in order to multiply it with a coefficient later on */
602 number mult, rest;
603 TObject tj = strat->T[0];
604 tj.Copy();
605 /* compute division with remainder of lc(h) and lc(T[j]) */
606 mult = n_QuotRem(pGetCoeff(h->p), pGetCoeff(T0p),
607 &rest, currRing->cf);
608 /* set corresponding new lead coefficient already. we do not
609 * remove the lead term in ksReducePolyLC, but only apply
610 * a lead coefficient reduction */
611 tj.Mult_nn(mult);
612 ksReducePolyLC(h, &tj, NULL, &rest, strat);
613 tj.Delete();
614 tj.Clear();
615 if (n_IsZero(pGetCoeff(h->GetP()),currRing->cf))
616 {
617 h->LmDeleteAndIter();
618 }
619 }
620 }
621 j = kFindDivisibleByInT(strat, h);
622 if (j < 0)
623 {
624 // over ZZ: cleanup coefficients by complete reduction with monomials
625 postReduceByMon(h, strat);
626 if(h->p == NULL)
627 {
628 kDeleteLcm(h);
629 h->Clear();
630 return 0;
631 }
632 if (strat->honey) h->SetLength(strat->length_pLength);
633 if(strat->tl >= 0)
634 h->i_r1 = strat->tl;
635 else
636 h->i_r1 = -1;
637 if (h->GetLmTailRing() == NULL)
638 {
639 kDeleteLcm(h);
640 h->Clear();
641 return 0;
642 }
643 return 1;
644 }
645
646 ei = strat->T[j].ecart;
647 ii = j;
648#if 1
649 if (ei > h->ecart && ii < strat->tl)
650 {
651 li = strat->T[j].length;
652 // the polynomial to reduce with (up to the moment) is;
653 // pi with ecart ei and length li
654 // look for one with smaller ecart
655 i = j;
656 loop
657 {
658 /*- takes the first possible with respect to ecart -*/
659 i++;
660#if 1
661 if (i > strat->tl) break;
662 if ((strat->T[i].ecart < ei || (strat->T[i].ecart == ei &&
663 strat->T[i].length < li))
664 &&
665 p_LmShortDivisibleBy(strat->T[i].GetLmTailRing(), strat->sevT[i], h->GetLmTailRing(), ~h->sev, strat->tailRing)
666 &&
667 n_DivBy(h->p->coef,strat->T[i].p->coef,strat->tailRing->cf))
668#else
669 j = kFindDivisibleByInT(strat, h, i);
670 if (j < 0) break;
671 i = j;
672 if (strat->T[i].ecart < ei || (strat->T[i].ecart == ei &&
673 strat->T[i].length < li))
674#endif
675 {
676 // the polynomial to reduce with is now
677 ii = i;
678 ei = strat->T[i].ecart;
679 if (ei <= h->ecart) break;
680 li = strat->T[i].length;
681 }
682 }
683 }
684#endif
685
686 // end of search: have to reduce with pi
687 if (ei > h->ecart)
688 {
689 // It is not possible to reduce h with smaller ecart;
690 // if possible h goes to the lazy-set L,i.e
691 // if its position in L would be not the last one
692 strat->fromT = TRUE;
693 if (!TEST_OPT_REDTHROUGH && strat->Ll >= 0) /*- L is not empty -*/
694 {
695 h->SetLmCurrRing();
696 if (strat->honey && strat->posInLDependsOnLength)
697 h->SetLength(strat->length_pLength);
698 assume(h->FDeg == h->pFDeg());
699 at = strat->posInL(strat->L,strat->Ll,h,strat);
700 if (at <= strat->Ll && pLmCmp(h->p, strat->L[strat->Ll].p) != 0 && !nEqual(h->p->coef, strat->L[strat->Ll].p->coef))
701 {
702 /*- h will not become the next element to reduce -*/
703 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
704#ifdef KDEBUG
705 if (TEST_OPT_DEBUG) Print(" ecart too big; -> L%d\n",at);
706#endif
707 h->Clear();
708 strat->fromT = FALSE;
709 return -1;
710 }
711 }
712 doRed(h,&(strat->T[ii]),strat->fromT,strat,TRUE);
713 }
714 else
715 {
716 // now we finally can reduce
717 doRed(h,&(strat->T[ii]),strat->fromT,strat,FALSE);
718 }
719 strat->fromT=FALSE;
720 // are we done ???
721 if (h->IsNull())
722 {
723 kDeleteLcm(h);
724 h->Clear();
725 return 0;
726 }
727
728 // NO!
729 h->SetShortExpVector();
730 h->SetpFDeg();
731 if (strat->honey)
732 {
733 if (ei <= h->ecart)
734 h->ecart = d-h->GetpFDeg();
735 else
736 h->ecart = d-h->GetpFDeg()+ei-h->ecart;
737 }
738 else
739 // this has the side effect of setting h->length
740 h->ecart = h->pLDeg(strat->LDegLast) - h->GetpFDeg();
741 /*- try to reduce the s-polynomial -*/
742 pass++;
743 d = h->GetpFDeg()+h->ecart;
744 /*
745 *test whether the polynomial should go to the lazyset L
746 *-if the degree jumps
747 *-if the number of pre-defined reductions jumps
748 */
749 if (!TEST_OPT_REDTHROUGH && (strat->Ll >= 0)
750 && ((d >= reddeg) || (pass > strat->LazyPass)))
751 {
752 h->SetLmCurrRing();
753 if (strat->honey && strat->posInLDependsOnLength)
754 h->SetLength(strat->length_pLength);
755 assume(h->FDeg == h->pFDeg());
756 at = strat->posInL(strat->L,strat->Ll,h,strat);
757 if (at <= strat->Ll)
758 {
759 int dummy=strat->sl;
760 if (kFindDivisibleByInS(strat, &dummy, h) < 0)
761 {
762 if (strat->honey && !strat->posInLDependsOnLength)
763 h->SetLength(strat->length_pLength);
764 return 1;
765 }
766 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
767#ifdef KDEBUG
768 if (TEST_OPT_DEBUG) Print(" degree jumped; ->L%d\n",at);
769#endif
770 h->Clear();
771 return -1;
772 }
773 }
774 else if ((TEST_OPT_PROT) && (strat->Ll < 0) && (d >= reddeg))
775 {
776 Print(".%ld",d);mflush();
777 reddeg = d+1;
778 if (h->pTotalDeg()+h->ecart >= (int)strat->tailRing->bitmask)
779 {
780 strat->overflow=TRUE;
781 //Print("OVERFLOW in redEcart d=%ld, max=%ld",d,strat->tailRing->bitmask);
782 h->GetP();
783 at = strat->posInL(strat->L,strat->Ll,h,strat);
784 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
785 h->Clear();
786 return -1;
787 }
788 }
789 }
790}
791#endif
792
793/*2
794*reduces h with elements from T choosing the first possible
795* element in t with respect to the given pDivisibleBy
796*/
798{
799 if (strat->tl<0) return 1;
800 if (h->IsNull()) return 0;
801
802 int at;
803 long reddeg,d;
804 int pass = 0;
805 int cnt = RED_CANONICALIZE;
806 int j = 0;
807
808 if (! strat->homog)
809 {
810 d = h->GetpFDeg() + h->ecart;
811 reddeg = strat->LazyDegree+d;
812 }
813 h->SetShortExpVector();
814 loop
815 {
816 j = kFindDivisibleByInT(strat, h);
817 if (j < 0)
818 {
819 h->SetDegStuffReturnLDeg(strat->LDegLast);
820 return 1;
821 }
822
824 strat->T[j].pNorm();
825#ifdef KDEBUG
826 if (TEST_OPT_DEBUG)
827 {
828 PrintS("reduce ");
829 h->wrp();
830 PrintS(" with ");
831 strat->T[j].wrp();
832 }
833#endif
834 ksReducePoly(h, &(strat->T[j]), strat->kNoetherTail(), NULL, NULL, strat);
835#ifdef KDEBUG
836 if (TEST_OPT_DEBUG)
837 {
838 PrintS(" to ");
839 wrp(h->p);
840 PrintLn();
841 }
842#endif
843 if (h->IsNull())
844 {
846 kDeleteLcm(h);
847 h->Clear();
848 return 0;
849 }
850 if (TEST_OPT_IDLIFT)
851 {
852 if (h->p!=NULL)
853 {
854 if(p_GetComp(h->p,currRing)>strat->syzComp)
855 {
856 h->Delete();
857 return 0;
858 }
859 }
860 else if (h->t_p!=NULL)
861 {
862 if(p_GetComp(h->t_p,strat->tailRing)>strat->syzComp)
863 {
864 h->Delete();
865 return 0;
866 }
867 }
868 }
869 #if 0
870 else if ((strat->syzComp > 0)&&(!TEST_OPT_REDTAIL_SYZ))
871 {
872 if (h->p!=NULL)
873 {
874 if(p_GetComp(h->p,currRing)>strat->syzComp)
875 {
876 return 1;
877 }
878 }
879 else if (h->t_p!=NULL)
880 {
881 if(p_GetComp(h->t_p,strat->tailRing)>strat->syzComp)
882 {
883 return 1;
884 }
885 }
886 }
887 #endif
888 h->SetShortExpVector();
889
890#if 0
891 if ((strat->syzComp!=0) && !strat->honey)
892 {
893 if ((strat->syzComp>0) &&
894 (h->Comp() > strat->syzComp))
895 {
896 assume(h->MinComp() > strat->syzComp);
897#ifdef KDEBUG
898 if (TEST_OPT_DEBUG) PrintS(" > syzComp\n");
899#endif
900 if (strat->homog)
901 h->SetDegStuffReturnLDeg(strat->LDegLast);
902 return -2;
903 }
904 }
905#endif
906 if (!strat->homog)
907 {
908 if (!TEST_OPT_OLDSTD && strat->honey)
909 {
910 h->SetpFDeg();
911 if (strat->T[j].ecart <= h->ecart)
912 h->ecart = d - h->GetpFDeg();
913 else
914 h->ecart = d - h->GetpFDeg() + strat->T[j].ecart - h->ecart;
915
916 d = h->GetpFDeg() + h->ecart;
917 }
918 else
919 d = h->SetDegStuffReturnLDeg(strat->LDegLast);
920 /*- try to reduce the s-polynomial -*/
921 cnt--;
922 pass++;
923 /*
924 *test whether the polynomial should go to the lazyset L
925 *-if the degree jumps
926 *-if the number of pre-defined reductions jumps
927 */
928 if (!TEST_OPT_REDTHROUGH && (strat->Ll >= 0)
929 && ((d >= reddeg) || (pass > strat->LazyPass)))
930 {
931 h->SetLmCurrRing();
932 if (strat->posInLDependsOnLength)
933 h->SetLength(strat->length_pLength);
934 at = strat->posInL(strat->L,strat->Ll,h,strat);
935 if (at <= strat->Ll)
936 {
937 int dummy=strat->sl;
938 if (kFindDivisibleByInS(strat,&dummy, h) < 0)
939 return 1;
940 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
941#ifdef KDEBUG
942 if (TEST_OPT_DEBUG) Print(" degree jumped; ->L%d\n",at);
943#endif
944 h->Clear();
945 return -1;
946 }
947 }
948 if (UNLIKELY(cnt==0))
949 {
950 h->CanonicalizeP();
952 //if (TEST_OPT_PROT) { PrintS("!");mflush(); }
953 }
954 if ((TEST_OPT_PROT) && (strat->Ll < 0) && (d >= reddeg))
955 {
956 reddeg = d+1;
957 Print(".%ld",d);mflush();
958 if (h->pTotalDeg()+h->ecart >= (int)strat->tailRing->bitmask)
959 {
960 strat->overflow=TRUE;
961 //Print("OVERFLOW in redFirst d=%ld, max=%ld",d,strat->tailRing->bitmask);
962 h->GetP();
963 at = strat->posInL(strat->L,strat->Ll,h,strat);
964 enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
965 h->Clear();
966 return -1;
967 }
968 }
969 }
970 }
971}
972
973/*2
974* reduces h with elements from T choosing first possible
975* element in T with respect to the given ecart
976* used for computing normal forms outside kStd
977*/
978static poly redMoraNF (poly h,kStrategy strat, int flag)
979{
980 LObject H;
981 H.p = h;
982 int j = 0;
983 int z = 10;
984 int o = H.SetpFDeg();
985 H.ecart = currRing->pLDeg(H.p,&H.length,currRing)-o;
986 if ((flag & 2) == 0) cancelunit(&H,TRUE);
987 H.sev = pGetShortExpVector(H.p);
988 loop
989 {
990 if (j > strat->tl)
991 {
992 return H.p;
993 }
994 if (TEST_V_DEG_STOP)
995 {
996 if (kModDeg(H.p)>Kstd1_deg) pLmDelete(&H.p);
997 if (H.p==NULL) return NULL;
998 }
999 unsigned long not_sev = ~ H.sev;
1000 if (p_LmShortDivisibleBy(strat->T[j].GetLmTailRing(), strat->sevT[j], H.GetLmTailRing(), not_sev, strat->tailRing)
1001 )
1002 {
1003 /*- remember the found T-poly -*/
1004 // poly pi = strat->T[j].p;
1005 int ei = strat->T[j].ecart;
1006 int li = strat->T[j].length;
1007 int ii = j;
1008 /*
1009 * the polynomial to reduce with (up to the moment) is;
1010 * pi with ecart ei and length li
1011 */
1012 loop
1013 {
1014 /*- look for a better one with respect to ecart -*/
1015 /*- stop, if the ecart is small enough (<=ecart(H)) -*/
1016 j++;
1017 if (j > strat->tl) break;
1018 if (ei <= H.ecart) break;
1019 if (((strat->T[j].ecart < ei)
1020 || ((strat->T[j].ecart == ei)
1021 && (strat->T[j].length < li)))
1022 && pLmShortDivisibleBy(strat->T[j].p,strat->sevT[j], H.p, not_sev)
1023 )
1024 {
1025 /*
1026 * the polynomial to reduce with is now;
1027 */
1028 // pi = strat->T[j].p;
1029 ei = strat->T[j].ecart;
1030 li = strat->T[j].length;
1031 ii = j;
1032 }
1033 }
1034 /*
1035 * end of search: have to reduce with pi
1036 */
1037 z++;
1038 if (z>10)
1039 {
1040 pNormalize(H.p);
1041 z=0;
1042 }
1043 if ((ei > H.ecart) && (strat->kNoether==NULL))
1044 {
1045 /*
1046 * It is not possible to reduce h with smaller ecart;
1047 * we have to reduce with bad ecart: H has to enter in T
1048 */
1049 LObject L= H;
1050 L.Copy();
1051 H.GetP();
1052 H.length=H.pLength=pLength(H.p);
1053 ksReducePoly(&L, &(strat->T[ii]), strat->kNoetherTail(), NULL, NULL, strat,
1054 (flag & KSTD_NF_NONORM)==0);
1055 enterT(H,strat);
1056 H = L;
1057 }
1058 else
1059 {
1060 /*
1061 * we reduce with good ecart, h need not to be put to T
1062 */
1063 ksReducePoly(&H, &(strat->T[ii]), strat->kNoetherTail(), NULL, NULL, strat,
1064 (flag & KSTD_NF_NONORM)==0);
1065 }
1066 if (H.p == NULL)
1067 return NULL;
1068 /*- try to reduce the s-polynomial -*/
1069 o = H.SetpFDeg();
1070 if ((flag & KSTD_NF_ECART) == 0) cancelunit(&H,TRUE);
1071 H.ecart = currRing->pLDeg(H.p,&(H.length),currRing)-o;
1072 j = 0;
1073 H.sev = pGetShortExpVector(H.p);
1074 }
1075 else
1076 {
1077 j++;
1078 }
1079 }
1080}
1081
1082#ifdef HAVE_RINGS
1083static poly redMoraNFRing (poly h,kStrategy strat, int flag)
1084{
1085 LObject H;
1086 H.p = h;
1087 int j0, j = 0;
1088 int docoeffred = 0;
1089 poly T0p = strat->T[0].p;
1090 int T0ecart = strat->T[0].ecart;
1091 int o = H.SetpFDeg();
1092 H.ecart = currRing->pLDeg(H.p,&H.length,currRing)-o;
1093 if ((flag & KSTD_NF_ECART) == 0) cancelunit(&H,TRUE);
1094 H.sev = pGetShortExpVector(H.p);
1095 unsigned long not_sev = ~ H.sev;
1096 if (strat->T[0].GetpFDeg() == 0 && strat->T[0].length <= 2)
1097 {
1098 docoeffred = 1; // euclidean ring required: n_QuotRem
1099 if (currRing->cf->cfQuotRem==ndQuotRem)
1100 {
1101 docoeffred = 0;
1102 }
1103 }
1104 loop
1105 {
1106 /* cut down the lead coefficients, only possible if the degree of
1107 * T[0] is 0 (constant). This is only efficient if T[0] is short, thus
1108 * we ask for the length of T[0] to be <= 2 */
1109 if (docoeffred)
1110 {
1111 j0 = kTestDivisibleByT0_Z(strat, &H);
1112 if ((j0 == 0)
1113 && (n_DivBy(pGetCoeff(H.p), pGetCoeff(T0p), currRing->cf) == FALSE)
1114 && (T0ecart <= H.ecart))
1115 {
1116 /* not(lc(reducer) | lc(poly)) && not(lc(poly) | lc(reducer))
1117 * => we try to cut down the lead coefficient at least */
1118 /* first copy T[j0] in order to multiply it with a coefficient later on */
1119 number mult, rest;
1120 TObject tj = strat->T[0];
1121 tj.Copy();
1122 /* compute division with remainder of lc(h) and lc(T[j]) */
1123 mult = n_QuotRem(pGetCoeff(H.p), pGetCoeff(T0p),
1124 &rest, currRing->cf);
1125 /* set corresponding new lead coefficient already. we do not
1126 * remove the lead term in ksReducePolyLC, but only apply
1127 * a lead coefficient reduction */
1128 tj.Mult_nn(mult);
1129 ksReducePolyLC(&H, &tj, NULL, &rest, strat);
1130 tj.Delete();
1131 tj.Clear();
1132 }
1133 }
1134 if (j > strat->tl)
1135 {
1136 return H.p;
1137 }
1138 if (TEST_V_DEG_STOP)
1139 {
1140 if (kModDeg(H.p)>Kstd1_deg) pLmDelete(&H.p);
1141 if (H.p==NULL) return NULL;
1142 }
1143 if (p_LmShortDivisibleBy(strat->T[j].GetLmTailRing(), strat->sevT[j], H.GetLmTailRing(), not_sev, strat->tailRing)
1144 && (n_DivBy(H.p->coef, strat->T[j].p->coef,strat->tailRing->cf))
1145 )
1146 {
1147 /*- remember the found T-poly -*/
1148 // poly pi = strat->T[j].p;
1149 int ei = strat->T[j].ecart;
1150 int li = strat->T[j].length;
1151 int ii = j;
1152 /*
1153 * the polynomial to reduce with (up to the moment) is;
1154 * pi with ecart ei and length li
1155 */
1156 loop
1157 {
1158 /*- look for a better one with respect to ecart -*/
1159 /*- stop, if the ecart is small enough (<=ecart(H)) -*/
1160 j++;
1161 if (j > strat->tl) break;
1162 if (ei <= H.ecart) break;
1163 if (((strat->T[j].ecart < ei)
1164 || ((strat->T[j].ecart == ei)
1165 && (strat->T[j].length < li)))
1166 && pLmShortDivisibleBy(strat->T[j].p,strat->sevT[j], H.p, not_sev)
1167 && (n_DivBy(H.p->coef, strat->T[j].p->coef,strat->tailRing->cf))
1168 )
1169 {
1170 /*
1171 * the polynomial to reduce with is now;
1172 */
1173 // pi = strat->T[j].p;
1174 ei = strat->T[j].ecart;
1175 li = strat->T[j].length;
1176 ii = j;
1177 }
1178 }
1179 /*
1180 * end of search: have to reduce with pi
1181 */
1182 if ((ei > H.ecart) && (strat->kNoether==NULL))
1183 {
1184 /*
1185 * It is not possible to reduce h with smaller ecart;
1186 * we have to reduce with bad ecart: H has to enter in T
1187 */
1188 LObject L= H;
1189 L.Copy();
1190 H.GetP();
1191 H.length=H.pLength=pLength(H.p);
1192 ksReducePoly(&L, &(strat->T[ii]), strat->kNoetherTail(), NULL, NULL, strat,
1193 (flag & KSTD_NF_NONORM)==0);
1194 enterT_strong(H,strat);
1195 H = L;
1196 }
1197 else
1198 {
1199 /*
1200 * we reduce with good ecart, h need not to be put to T
1201 */
1202 ksReducePoly(&H, &(strat->T[ii]), strat->kNoetherTail(), NULL, NULL, strat,
1203 (flag & KSTD_NF_NONORM)==0);
1204 }
1205 if (H.p == NULL)
1206 return NULL;
1207 /*- try to reduce the s-polynomial -*/
1208 o = H.SetpFDeg();
1209 if ((flag &2 ) == 0) cancelunit(&H,TRUE);
1210 H.ecart = currRing->pLDeg(H.p,&(H.length),currRing)-o;
1211 j = 0;
1212 H.sev = pGetShortExpVector(H.p);
1213 not_sev = ~ H.sev;
1214 }
1215 else
1216 {
1217 j++;
1218 }
1219 }
1220}
1221#endif
1222
1223/*2
1224*reorders L with respect to posInL
1225*/
1227{
1228 int i,j,at;
1229 LObject p;
1230
1231 for (i=1; i<=strat->Ll; i++)
1232 {
1233 at = strat->posInL(strat->L,i-1,&(strat->L[i]),strat);
1234 if (at != i)
1235 {
1236 p = strat->L[i];
1237 for (j=i-1; j>=at; j--) strat->L[j+1] = strat->L[j];
1238 strat->L[at] = p;
1239 }
1240 }
1241}
1242
1243/*2
1244*reorders T with respect to length
1245*/
1247{
1248 int i,j,at;
1249 TObject p;
1250 unsigned long sev;
1251
1252
1253 for (i=1; i<=strat->tl; i++)
1254 {
1255 if (strat->T[i-1].length > strat->T[i].length)
1256 {
1257 p = strat->T[i];
1258 sev = strat->sevT[i];
1259 at = i-1;
1260 loop
1261 {
1262 at--;
1263 if (at < 0) break;
1264 if (strat->T[i].length > strat->T[at].length) break;
1265 }
1266 for (j = i-1; j>at; j--)
1267 {
1268 strat->T[j+1]=strat->T[j];
1269 strat->sevT[j+1]=strat->sevT[j];
1270 strat->R[strat->T[j+1].i_r] = &(strat->T[j+1]);
1271 }
1272 strat->T[at+1]=p;
1273 strat->sevT[at+1] = sev;
1274 strat->R[p.i_r] = &(strat->T[at+1]);
1275 }
1276 }
1277}
1278
1279/*2
1280*looks whether exactly (currRing->N)-1 axis are used
1281*returns last != 0 in this case
1282*last is the (first) unused axis
1283*/
1284void missingAxis (int* last,kStrategy strat)
1285{
1286 int i = 0;
1287 int k = 0;
1288
1289 *last = 0;
1291 {
1292 loop
1293 {
1294 i++;
1295 if (i > (currRing->N)) break;
1296 if (strat->NotUsedAxis[i])
1297 {
1298 *last = i;
1299 k++;
1300 }
1301 if (k>1)
1302 {
1303 *last = 0;
1304 break;
1305 }
1306 }
1307 }
1308}
1309
1310/*2
1311*last is the only non used axis, it looks
1312*for a monomial in p being a pure power of this
1313*variable and returns TRUE in this case
1314*(*length) gives the length between the pure power and the leading term
1315*(should be minimal)
1316*/
1317BOOLEAN hasPurePower (const poly p,int last, int *length,kStrategy strat)
1318{
1319 poly h;
1320 int i;
1321
1322 if (pNext(p) == strat->tail)
1323 return FALSE;
1324 pp_Test(p, currRing, strat->tailRing);
1325 if (strat->ak <= 0 || p_MinComp(p, currRing, strat->tailRing) == strat->ak)
1326 {
1328 if (rField_is_Ring(currRing) && (!n_IsUnit(pGetCoeff(p), currRing->cf))) i=0;
1329 if (i == last)
1330 {
1331 *length = 0;
1332 return TRUE;
1333 }
1334 *length = 1;
1335 h = pNext(p);
1336 while (h != NULL)
1337 {
1338 i = p_IsPurePower(h, strat->tailRing);
1339 if (rField_is_Ring(currRing) && (!n_IsUnit(pGetCoeff(h), currRing->cf))) i=0;
1340 if (i==last) return TRUE;
1341 (*length)++;
1342 pIter(h);
1343 }
1344 }
1345 return FALSE;
1346}
1347
1349{
1350 if (L->bucket != NULL)
1351 {
1352 poly p = L->GetP();
1353 return hasPurePower(p, last, length, strat);
1354 }
1355 else
1356 {
1357 return hasPurePower(L->p, last, length, strat);
1358 }
1359}
1360
1361/*2
1362* looks up the position of polynomial p in L
1363* in the case of looking for the pure powers
1364*/
1365int posInL10 (const LSet set,const int length, LObject* p,const kStrategy strat)
1366{
1367 int j,dp,dL;
1368
1369 if (length<0) return 0;
1370 if (hasPurePower(p,strat->lastAxis,&dp,strat))
1371 {
1372 int op= p->GetpFDeg() +p->ecart;
1373 for (j=length; j>=0; j--)
1374 {
1375 if (!hasPurePower(&(set[j]),strat->lastAxis,&dL,strat))
1376 return j+1;
1377 if (dp < dL)
1378 return j+1;
1379 if ((dp == dL)
1380 && (set[j].GetpFDeg()+set[j].ecart >= op))
1381 return j+1;
1382 }
1383 }
1384 j=length;
1385 loop
1386 {
1387 if (j<0) break;
1388 if (!hasPurePower(&(set[j]),strat->lastAxis,&dL,strat)) break;
1389 j--;
1390 }
1391 return strat->posInLOld(set,j,p,strat);
1392}
1393
1394
1395/*2
1396* computes the s-polynomials L[ ].p in L
1397*/
1399{
1400 LObject p;
1401 int dL;
1402 int j=strat->Ll;
1403 loop
1404 {
1405 if (j<0) break;
1406 if (hasPurePower(&(strat->L[j]),strat->lastAxis,&dL,strat))
1407 {
1408 p=strat->L[strat->Ll];
1409 strat->L[strat->Ll]=strat->L[j];
1410 strat->L[j]=p;
1411 break;
1412 }
1413 j--;
1414 }
1415 if (j<0)
1416 {
1417 j=strat->Ll;
1418 loop
1419 {
1420 if (j<0) break;
1421 if (pNext(strat->L[j].p) == strat->tail)
1422 {
1424 pLmDelete(strat->L[j].p); /*deletes the short spoly and computes*/
1425 else
1426 pLmFree(strat->L[j].p); /*deletes the short spoly and computes*/
1427 strat->L[j].p = NULL;
1428 poly m1 = NULL, m2 = NULL;
1429 // check that spoly creation is ok
1430 while (strat->tailRing != currRing &&
1431 !kCheckSpolyCreation(&(strat->L[j]), strat, m1, m2))
1432 {
1433 assume(m1 == NULL && m2 == NULL);
1434 // if not, change to a ring where exponents are at least
1435 // large enough
1436 kStratChangeTailRing(strat);
1437 }
1438 /* create the real one */
1439 ksCreateSpoly(&(strat->L[j]), strat->kNoetherTail(), FALSE,
1440 strat->tailRing, m1, m2, strat->R);
1441
1442 strat->L[j].SetLmCurrRing();
1443 if (!strat->honey)
1444 strat->initEcart(&strat->L[j]);
1445 else
1446 strat->L[j].SetLength(strat->length_pLength);
1447
1448 BOOLEAN pp = hasPurePower(&(strat->L[j]),strat->lastAxis,&dL,strat);
1449
1450 if (strat->use_buckets) strat->L[j].PrepareRed(TRUE);
1451
1452 if (pp)
1453 {
1454 p=strat->L[strat->Ll];
1455 strat->L[strat->Ll]=strat->L[j];
1456 strat->L[j]=p;
1457 break;
1458 }
1459 }
1460 j--;
1461 }
1462 }
1463}
1464
1465/*2
1466* computes the s-polynomials L[ ].p in L and
1467* cuts elements in L above noether
1468*/
1470{
1471
1472 int i = 0;
1473 kTest_TS(strat);
1474 while (i <= strat->Ll)
1475 {
1476 if (pNext(strat->L[i].p) == strat->tail)
1477 {
1478 /*- deletes the int spoly and computes -*/
1479 if (pLmCmp(strat->L[i].p,strat->kNoether) == -1)
1480 {
1482 pLmDelete(strat->L[i].p);
1483 else
1484 pLmFree(strat->L[i].p);
1485 strat->L[i].p = NULL;
1486 }
1487 else
1488 {
1490 pLmDelete(strat->L[i].p);
1491 else
1492 pLmFree(strat->L[i].p);
1493 strat->L[i].p = NULL;
1494 poly m1 = NULL, m2 = NULL;
1495 // check that spoly creation is ok
1496 while (strat->tailRing != currRing &&
1497 !kCheckSpolyCreation(&(strat->L[i]), strat, m1, m2))
1498 {
1499 assume(m1 == NULL && m2 == NULL);
1500 // if not, change to a ring where exponents are at least
1501 // large enough
1502 kStratChangeTailRing(strat);
1503 }
1504 /* create the real one */
1505 ksCreateSpoly(&(strat->L[i]), strat->kNoetherTail(), FALSE,
1506 strat->tailRing, m1, m2, strat->R);
1507 if (! strat->L[i].IsNull())
1508 {
1509 strat->L[i].SetLmCurrRing();
1510 strat->L[i].SetpFDeg();
1511 strat->L[i].ecart
1512 = strat->L[i].pLDeg(strat->LDegLast) - strat->L[i].GetpFDeg();
1513 if (strat->use_buckets) strat->L[i].PrepareRed(TRUE);
1514 }
1515 }
1516 }
1517 deleteHC(&(strat->L[i]), strat);
1518 if (strat->L[i].IsNull())
1519 deleteInL(strat->L,&strat->Ll,i,strat);
1520 else
1521 {
1522#ifdef KDEBUG
1523 kTest_L(&(strat->L[i]), strat, TRUE, i, strat->T, strat->tl);
1524#endif
1525 i++;
1526 }
1527 }
1528 kTest_TS(strat);
1529}
1530
1531/*2
1532* cuts in T above strat->kNoether and tries to cancel a unit
1533* changes also S as S is a subset of T
1534*/
1536{
1537 int i = 0;
1538 LObject p;
1539
1540 while (i <= strat->tl)
1541 {
1542 p = strat->T[i];
1543 deleteHC(&p,strat, TRUE);
1544 /*- tries to cancel a unit: -*/
1545 cancelunit(&p);
1546 if (TEST_OPT_INTSTRATEGY) /* deleteHC and/or cancelunit may have changed p*/
1547 p.pCleardenom();
1548 if (p.p != strat->T[i].p)
1549 {
1550 strat->sevT[i] = pGetShortExpVector(p.p);
1551 p.SetpFDeg();
1552 }
1553 strat->T[i] = p;
1554 i++;
1555 }
1556}
1557
1558/*2
1559* arranges red, pos and T if strat->kAllAxis (first time)
1560*/
1562{
1563 if (strat->update)
1564 {
1565 kTest_TS(strat);
1566 strat->update = (strat->tl == -1);
1567 if (TEST_OPT_WEIGHTM)
1568 {
1570 if (strat->tailRing != currRing)
1571 {
1572 strat->tailRing->pFDeg = strat->pOrigFDeg_TailRing;
1573 strat->tailRing->pLDeg = strat->pOrigLDeg_TailRing;
1574 }
1575 int i;
1576 for (i=strat->Ll; i>=0; i--)
1577 {
1578 strat->L[i].SetpFDeg();
1579 }
1580 for (i=strat->tl; i>=0; i--)
1581 {
1582 strat->T[i].SetpFDeg();
1583 }
1584 if (ecartWeights)
1585 {
1586 omFreeSize((ADDRESS)ecartWeights,(rVar(currRing)+1)*sizeof(short));
1588 }
1589 }
1590 if (TEST_OPT_FASTHC)
1591 {
1592 strat->posInL = strat->posInLOld;
1593 strat->lastAxis = 0;
1594 }
1595 if (TEST_OPT_FINDET)
1596 return;
1597
1599 {
1600 strat->red = redFirst;
1601 strat->use_buckets = kMoraUseBucket(strat);
1602 }
1603 updateT(strat);
1604
1606 {
1607 strat->posInT = posInT2;
1608 reorderT(strat);
1609 }
1610 }
1611 kTest_TS(strat);
1612}
1613
1614/*2
1615*-puts p to the standardbasis s at position at
1616*-reduces the tail of p if TEST_OPT_REDTAIL
1617*-tries to cancel a unit
1618*-HEckeTest
1619* if TRUE
1620* - decides about reduction-strategies
1621* - computes noether
1622* - stops computation if TEST_OPT_FINDET
1623* - cuts the tails of the polynomials
1624* in s,t and the elements in L above noether
1625* and cancels units if possible
1626* - reorders s,L
1627*/
1628void enterSMora (LObject &p,int atS,kStrategy strat, int atR = -1)
1629{
1630 enterSBba(p, atS, strat, atR);
1631 #ifdef KDEBUG
1632 if (TEST_OPT_DEBUG)
1633 {
1634 Print("new s%d:",atS);
1635 p_wrp(p.p,currRing,strat->tailRing);
1636 PrintLn();
1637 }
1638 #endif
1639 HEckeTest(p.p,strat);
1640 if (strat->kAllAxis)
1641 {
1642 if (newHEdge(strat))
1643 {
1644 firstUpdate(strat);
1645 if (TEST_OPT_FINDET)
1646 return;
1647
1648 /*- cuts elements in L above noether and reorders L -*/
1649 updateLHC(strat);
1650 /*- reorders L with respect to posInL -*/
1651 reorderL(strat);
1652 }
1653 }
1654 else if ((strat->kNoether==NULL)
1655 && (TEST_OPT_FASTHC))
1656 {
1657 if (strat->posInLOldFlag)
1658 {
1659 missingAxis(&strat->lastAxis,strat);
1660 if (strat->lastAxis)
1661 {
1662 strat->posInLOld = strat->posInL;
1663 strat->posInLOldFlag = FALSE;
1664 strat->posInL = posInL10;
1665 strat->posInLDependsOnLength = TRUE;
1666 updateL(strat);
1667 reorderL(strat);
1668 }
1669 }
1670 else if (strat->lastAxis)
1671 updateL(strat);
1672 }
1673}
1674
1675/*2
1676*-puts p to the standardbasis s at position at
1677*-HEckeTest
1678* if TRUE
1679* - computes noether
1680*/
1681void enterSMoraNF (LObject &p, int atS,kStrategy strat, int atR = -1)
1682{
1683 enterSBba(p, atS, strat, atR);
1684 if ((!strat->kAllAxis) || (strat->kNoether!=NULL)) HEckeTest(p.p,strat);
1685 if (strat->kAllAxis)
1686 newHEdge(strat);
1687}
1688
1690{
1691 /* setting global variables ------------------- */
1692 strat->enterS = enterSBba;
1693 strat->red = redHoney;
1694 if (strat->honey)
1695 strat->red = redHoney;
1696 else if (currRing->pLexOrder && !strat->homog)
1697 strat->red = redLazy;
1698 else
1699 {
1700 strat->LazyPass *=4;
1701 strat->red = redHomog;
1702 }
1704 {
1705 if (rField_is_Z(currRing))
1706 strat->red = redRing_Z;
1707 else
1708 strat->red = redRing;
1709 }
1710 if (TEST_OPT_IDLIFT)
1711 strat->red=redLiftstd;
1712 if (currRing->pLexOrder && strat->honey)
1713 strat->initEcart = initEcartNormal;
1714 else
1715 strat->initEcart = initEcartBBA;
1716 if (strat->honey)
1718 else
1720// if ((TEST_OPT_WEIGHTM)&&(F!=NULL))
1721// {
1722// //interred machen Aenderung
1723// strat->pOrigFDeg=pFDeg;
1724// strat->pOrigLDeg=pLDeg;
1725// //h=ggetid("ecart");
1726// //if ((h!=NULL) /*&& (IDTYP(h)==INTVEC_CMD)*/)
1727// //{
1728// // ecartWeights=iv2array(IDINTVEC(h));
1729// //}
1730// //else
1731// {
1732// ecartWeights=(short *)omAlloc(((currRing->N)+1)*sizeof(short));
1733// /*uses automatic computation of the ecartWeights to set them*/
1734// kEcartWeights(F->m,IDELEMS(F)-1,ecartWeights);
1735// }
1736// pRestoreDegProcs(currRing,totaldegreeWecart, maxdegreeWecart);
1737// if (TEST_OPT_PROT)
1738// {
1739// for(i=1; i<=(currRing->N); i++)
1740// Print(" %d",ecartWeights[i]);
1741// PrintLn();
1742// mflush();
1743// }
1744// }
1745}
1746
1747void initSba(ideal F,kStrategy strat)
1748{
1749 int i;
1750 //idhdl h;
1751 /* setting global variables ------------------- */
1752 strat->enterS = enterSSba;
1753 strat->red2 = redHoney;
1754 if (strat->honey)
1755 strat->red2 = redHoney;
1756 else if (currRing->pLexOrder && !strat->homog)
1757 strat->red2 = redLazy;
1758 else
1759 {
1760 strat->LazyPass *=4;
1761 strat->red2 = redHomog;
1762 }
1764 {
1766 {strat->red2 = redRiloc;}
1767 else
1768 {strat->red2 = redRing;}
1769 }
1770 if (currRing->pLexOrder && strat->honey)
1771 strat->initEcart = initEcartNormal;
1772 else
1773 strat->initEcart = initEcartBBA;
1774 if (strat->honey)
1776 else
1778 //strat->kIdeal = NULL;
1779 //if (strat->ak==0) strat->kIdeal->rtyp=IDEAL_CMD;
1780 //else strat->kIdeal->rtyp=MODUL_CMD;
1781 //strat->kIdeal->data=(void *)strat->Shdl;
1782 if ((TEST_OPT_WEIGHTM)&&(F!=NULL))
1783 {
1784 //interred machen Aenderung
1785 strat->pOrigFDeg = currRing->pFDeg;
1786 strat->pOrigLDeg = currRing->pLDeg;
1787 //h=ggetid("ecart");
1788 //if ((h!=NULL) /*&& (IDTYP(h)==INTVEC_CMD)*/)
1789 //{
1790 // ecartWeights=iv2array(IDINTVEC(h));
1791 //}
1792 //else
1793 {
1794 ecartWeights=(short *)omAlloc(((currRing->N)+1)*sizeof(short));
1795 /*uses automatic computation of the ecartWeights to set them*/
1797 }
1799 if (TEST_OPT_PROT)
1800 {
1801 for(i=1; i<=(currRing->N); i++)
1802 Print(" %d",ecartWeights[i]);
1803 PrintLn();
1804 mflush();
1805 }
1806 }
1807 // for sig-safe reductions in signature-based
1808 // standard basis computations
1810 strat->red = redSigRing;
1811 else
1812 strat->red = redSig;
1813 //strat->sbaOrder = 1;
1814 strat->currIdx = 1;
1815}
1816
1817void initMora(ideal F,kStrategy strat)
1818{
1819 int i,j;
1820
1821 strat->NotUsedAxis = (BOOLEAN *)omAlloc(((currRing->N)+1)*sizeof(BOOLEAN));
1822 for (j=(currRing->N); j>0; j--) strat->NotUsedAxis[j] = TRUE;
1823 strat->enterS = enterSMora;
1824 strat->initEcartPair = initEcartPairMora; /*- ecart approximation -*/
1825 strat->posInLOld = strat->posInL;
1826 strat->posInLOldFlag = TRUE;
1827 strat->initEcart = initEcartNormal;
1828 strat->kAllAxis = (currRing->ppNoether) != NULL; //!!
1829 if ( currRing->ppNoether != NULL )
1830 {
1831 strat->kNoether = pCopy((currRing->ppNoether));
1832 strat->red = redFirst; /*take the first possible in T*/
1833 if (TEST_OPT_PROT)
1834 {
1835 Print("H(%ld)",p_FDeg(currRing->ppNoether,currRing)+1);
1836 mflush();
1837 }
1838 }
1839 else if (strat->homog)
1840 strat->red = redFirst; /*take the first possible in T*/
1841 else
1842 strat->red = redEcart;/*take the first possible in under ecart-restriction*/
1843 if (currRing->ppNoether != NULL)
1844 {
1845 HCord = currRing->pFDeg((currRing->ppNoether),currRing)+1;
1846 }
1847 else
1848 {
1849 HCord = 32000;/*- very large -*/
1850 }
1851
1853 {
1854 if (rField_is_Z(currRing))
1855 strat->red = redRiloc_Z;
1856 else
1857 strat->red = redRiloc;
1858 }
1859
1860 /*reads the ecartWeights used for Graebes method from the
1861 *intvec ecart and set ecartWeights
1862 */
1863 if ((TEST_OPT_WEIGHTM)&&(F!=NULL))
1864 {
1865 //interred machen Aenderung
1866 strat->pOrigFDeg=currRing->pFDeg;
1867 strat->pOrigLDeg=currRing->pLDeg;
1868 ecartWeights=(short *)omAlloc(((currRing->N)+1)*sizeof(short));
1869 /*uses automatic computation of the ecartWeights to set them*/
1871
1873 if (TEST_OPT_PROT)
1874 {
1875 for(i=1; i<=(currRing->N); i++)
1876 Print(" %d",ecartWeights[i]);
1877 PrintLn();
1878 mflush();
1879 }
1880 }
1881 kOptimizeLDeg(currRing->pLDeg, strat);
1882}
1883
1884void kDebugPrint(kStrategy strat);
1885
1886ideal mora (ideal F, ideal Q,intvec *w,intvec *hilb,kStrategy strat)
1887{
1888 int olddeg = 0;
1889 int reduc = 0;
1890 int red_result = 1;
1891 int hilbeledeg=1,hilbcount=0;
1892 BITSET save1;
1893 SI_SAVE_OPT1(save1);
1895 {
1896 si_opt_1 &= ~Sy_bit(OPT_REDSB);
1897 si_opt_1 &= ~Sy_bit(OPT_REDTAIL);
1898 }
1899
1900 strat->update = TRUE;
1901 /*- setting global variables ------------------- -*/
1902 initBuchMoraCrit(strat);
1903 initHilbCrit(F,Q,&hilb,strat);
1904 initMora(F,strat);
1906 initBuchMoraPosRing(strat);
1907 else
1908 initBuchMoraPos(strat);
1909 /*Shdl=*/initBuchMora(F,Q,strat);
1910 if (TEST_OPT_FASTHC) missingAxis(&strat->lastAxis,strat);
1911 /*updateS in initBuchMora has Hecketest
1912 * and could have put strat->kHEdgdeFound FALSE*/
1913 if (TEST_OPT_FASTHC && (strat->lastAxis) && strat->posInLOldFlag)
1914 {
1915 strat->posInLOld = strat->posInL;
1916 strat->posInLOldFlag = FALSE;
1917 strat->posInL = posInL10;
1918 updateL(strat);
1919 reorderL(strat);
1920 }
1921 kTest_TS(strat);
1922 strat->use_buckets = kMoraUseBucket(strat);
1923
1924#ifdef HAVE_TAIL_RING
1925 if (strat->homog && strat->red == redFirst)
1926 if(!idIs0(F) &&(!rField_is_Ring(currRing)))
1928#endif
1929
1930 if (BVERBOSE(23))
1931 {
1932 kDebugPrint(strat);
1933 }
1934//deleteInL(strat->L,&strat->Ll,1,strat);
1935//deleteInL(strat->L,&strat->Ll,0,strat);
1936
1937 /*- compute-------------------------------------------*/
1938 while (strat->Ll >= 0)
1939 {
1940 #ifdef KDEBUG
1941 if (TEST_OPT_DEBUG) messageSets(strat);
1942 #endif
1943 if (siCntrlc)
1944 {
1945 while (strat->Ll >= 0)
1946 deleteInL(strat->L,&strat->Ll,strat->Ll,strat);
1947 strat->noClearS=TRUE;
1948 }
1950 && (strat->L[strat->Ll].ecart+strat->L[strat->Ll].GetpFDeg()> Kstd1_deg))
1951 {
1952 /*
1953 * stops computation if
1954 * - 24 (degBound)
1955 * && upper degree is bigger than Kstd1_deg
1956 */
1957 while ((strat->Ll >= 0)
1958 && (strat->L[strat->Ll].p1!=NULL) && (strat->L[strat->Ll].p2!=NULL)
1959 && (strat->L[strat->Ll].ecart+strat->L[strat->Ll].GetpFDeg()> Kstd1_deg)
1960 )
1961 {
1962 deleteInL(strat->L,&strat->Ll,strat->Ll,strat);
1963 //if (TEST_OPT_PROT)
1964 //{
1965 // PrintS("D"); mflush();
1966 //}
1967 }
1968 if (strat->Ll<0) break;
1969 else strat->noClearS=TRUE;
1970 }
1971 strat->P = strat->L[strat->Ll];/*- picks the last element from the lazyset L -*/
1972 if (strat->Ll==0) strat->interpt=TRUE;
1973 strat->Ll--;
1974 // create the real Spoly
1975 if (pNext(strat->P.p) == strat->tail)
1976 {
1977 /*- deletes the short spoly and computes -*/
1979 pLmDelete(strat->P.p);
1980 else
1981 pLmFree(strat->P.p);
1982 strat->P.p = NULL;
1983 poly m1 = NULL, m2 = NULL;
1984 // check that spoly creation is ok
1985 while (strat->tailRing != currRing &&
1986 !kCheckSpolyCreation(&(strat->P), strat, m1, m2))
1987 {
1988 assume(m1 == NULL && m2 == NULL);
1989 // if not, change to a ring where exponents are large enough
1990 kStratChangeTailRing(strat);
1991 }
1992 /* create the real one */
1993 ksCreateSpoly(&(strat->P), strat->kNoetherTail(), strat->use_buckets,
1994 strat->tailRing, m1, m2, strat->R);
1995 if (!strat->use_buckets)
1996 strat->P.SetLength(strat->length_pLength);
1997 }
1998 else if (strat->P.p1 == NULL)
1999 {
2000 // for input polys, prepare reduction (buckets !)
2001 strat->P.SetLength(strat->length_pLength);
2002 strat->P.PrepareRed(strat->use_buckets);
2003 }
2004
2005 // the s-poly
2006 if (!strat->P.IsNull())
2007 {
2008 // might be NULL from noether !!!
2009 if (TEST_OPT_PROT)
2010 message(strat->P.ecart+strat->P.GetpFDeg(),&olddeg,&reduc,strat, red_result);
2011 // reduce
2012 red_result = strat->red(&strat->P,strat);
2013 }
2014
2015 // the reduced s-poly
2016 if (! strat->P.IsNull())
2017 {
2018 strat->P.GetP();
2019 // statistics
2020 if (TEST_OPT_PROT) PrintS("s");
2021 // normalization
2023 strat->P.pCleardenom();
2024 else
2025 strat->P.pNorm();
2026 // tailreduction
2027 strat->P.p = redtail(&(strat->P),strat->sl,strat);
2028 if (strat->P.p==NULL)
2029 {
2030 WerrorS("exponent overflow - wrong ordering");
2031 return(idInit(1,1));
2032 }
2033 // set ecart -- might have changed because of tail reductions
2034 if ((!strat->noTailReduction) && (!strat->honey))
2035 strat->initEcart(&strat->P);
2036 // cancel unit
2037 cancelunit(&strat->P);
2038 // for char 0, clear denominators
2039 if ((strat->P.p->next==NULL) /* i.e. cancelunit did something*/
2041 strat->P.pCleardenom();
2042
2043 strat->P.SetShortExpVector();
2044 enterT(strat->P,strat);
2045 // build new pairs
2047 superenterpairs(strat->P.p,strat->sl,strat->P.ecart,0,strat, strat->tl);
2048 else
2049 enterpairs(strat->P.p,strat->sl,strat->P.ecart,0,strat, strat->tl);
2050 // put in S
2051 strat->enterS(strat->P,
2052 posInS(strat,strat->sl,strat->P.p, strat->P.ecart),
2053 strat, strat->tl);
2054 // apply hilbert criterion
2055 if (hilb!=NULL)
2056 {
2057 if (strat->homog==isHomog)
2058 khCheck(Q,w,hilb,hilbeledeg,hilbcount,strat);
2059 else
2060 khCheckLocInhom(Q,w,hilb,hilbcount,strat);
2061 }
2062
2063 // clear strat->P
2064 kDeleteLcm(&strat->P);
2065
2066#ifdef KDEBUG
2067 // make sure kTest_TS does not complain about strat->P
2068 strat->P.Clear();
2069#endif
2070 }
2071 if (strat->kAllAxis)
2072 {
2073 if ((TEST_OPT_FINDET)
2074 || ((TEST_OPT_MULTBOUND) && (scMult0Int(strat->Shdl,NULL) < Kstd1_mu)))
2075 {
2076 // obachman: is this still used ???
2077 /*
2078 * stops computation if strat->kAllAxis and
2079 * - 27 (finiteDeterminacyTest)
2080 * or
2081 * - 23
2082 * (multBound)
2083 * && multiplicity of the ideal is smaller then a predefined number mu
2084 */
2085 while (strat->Ll >= 0) deleteInL(strat->L,&strat->Ll,strat->Ll,strat);
2086 }
2087 }
2088 kTest_TS(strat);
2089 }
2090 /*- complete reduction of the standard basis------------------------ -*/
2091 if (TEST_OPT_REDSB) completeReduce(strat);
2092 else if (TEST_OPT_PROT) PrintLn();
2093 /*- release temp data------------------------------- -*/
2094 exitBuchMora(strat);
2095 /*- polynomials used for HECKE: HC, noether -*/
2096 if (TEST_OPT_FINDET)
2097 {
2098 if (strat->kNoether!=NULL)
2099 Kstd1_mu=currRing->pFDeg(strat->kNoether,currRing);
2100 else
2101 Kstd1_mu=-1;
2102 }
2103 if (strat->kNoether!=NULL) pLmFree(&strat->kNoether);
2104 if (strat->kNoether!=NULL) pLmDelete(&strat->kNoether);
2105 omFreeSize((ADDRESS)strat->NotUsedAxis,((currRing->N)+1)*sizeof(BOOLEAN));
2106 if ((TEST_OPT_PROT)||(TEST_OPT_DEBUG)) messageStat(hilbcount,strat);
2107// if (TEST_OPT_WEIGHTM)
2108// {
2109// pRestoreDegProcs(currRing,strat->pOrigFDeg, strat->pOrigLDeg);
2110// if (ecartWeights)
2111// {
2112// omFreeSize((ADDRESS)ecartWeights,((currRing->N)+1)*sizeof(short));
2113// ecartWeights=NULL;
2114// }
2115// }
2116 if(nCoeff_is_Z(currRing->cf))
2117 finalReduceByMon(strat);
2118 if (Q!=NULL) updateResult(strat->Shdl,Q,strat);
2119 SI_RESTORE_OPT1(save1);
2120 idTest(strat->Shdl);
2121 return (strat->Shdl);
2122}
2123
2124poly kNF1 (ideal F,ideal Q,poly q, kStrategy strat, int lazyReduce)
2125{
2126 assume(q!=NULL);
2127 assume(!(idIs0(F)&&(Q==NULL)));
2128
2129// lazy_reduce flags: can be combined by |
2130//#define KSTD_NF_LAZY 1
2131 // do only a reduction of the leading term
2132//#define KSTD_NF_ECART 2
2133 // only local: reduce even with bad ecart
2134 poly p;
2135 int i;
2136 int j;
2137 int o;
2138 LObject h;
2139 BITSET save1;
2140 SI_SAVE_OPT1(save1);
2141
2142 //if ((idIs0(F))&&(Q==NULL))
2143 // return pCopy(q); /*F=0*/
2144 //strat->ak = si_max(idRankFreeModule(F),pMaxComp(q));
2145 /*- creating temp data structures------------------- -*/
2146 //strat->kAllAxis = (currRing->ppNoether) != NULL;
2147 strat->kNoether = pCopy((currRing->ppNoether));
2150 si_opt_1&=~Sy_bit(OPT_INTSTRATEGY);
2152 && (! TEST_V_DEG_STOP)
2153 && (0<Kstd1_deg)
2154 && ((strat->kNoether==NULL)
2156 {
2157 pLmDelete(&strat->kNoether);
2158 strat->kNoether=pOne();
2159 pSetExp(strat->kNoether,1, Kstd1_deg+1);
2160 pSetm(strat->kNoether);
2161 // strat->kAllAxis=TRUE;
2162 }
2163 initBuchMoraCrit(strat);
2165 initBuchMoraPosRing(strat);
2166 else
2167 initBuchMoraPos(strat);
2168 initMora(F,strat);
2169 strat->enterS = enterSMoraNF;
2170 /*- set T -*/
2171 strat->tl = -1;
2172 strat->tmax = setmaxT;
2173 strat->T = initT();
2174 strat->R = initR();
2175 strat->sevT = initsevT();
2176 /*- set S -*/
2177 strat->sl = -1;
2178 /*- init local data struct.-------------------------- -*/
2179 /*Shdl=*/initS(F,Q,strat);
2180 if ((strat->ak!=0)
2181 && (strat->kAllAxis)) /*never true for ring-cf*/
2182 {
2183 if (strat->ak!=1)
2184 {
2185 pSetComp(strat->kNoether,1);
2186 pSetmComp(strat->kNoether);
2187 poly p=pHead(strat->kNoether);
2188 pSetComp(p,strat->ak);
2189 pSetmComp(p);
2190 p=pAdd(strat->kNoether,p);
2191 strat->kNoether=pNext(p);
2193 }
2194 }
2195 if (((lazyReduce & KSTD_NF_LAZY)==0)
2196 && (!rField_is_Ring(currRing)))
2197 {
2198 for (i=strat->sl; i>=0; i--)
2199 pNorm(strat->S[i]);
2200 }
2201 /*- puts the elements of S also to T -*/
2202 for (i=0; i<=strat->sl; i++)
2203 {
2204 h.p = strat->S[i];
2205 h.ecart = strat->ecartS[i];
2206 if (strat->sevS[i] == 0) strat->sevS[i] = pGetShortExpVector(h.p);
2207 else assume(strat->sevS[i] == pGetShortExpVector(h.p));
2208 h.length = pLength(h.p);
2209 h.sev = strat->sevS[i];
2210 h.SetpFDeg();
2211 enterT(h,strat);
2212 }
2213#ifdef KDEBUG
2214// kDebugPrint(strat);
2215#endif
2216 /*- compute------------------------------------------- -*/
2217 p = pCopy(q);
2218 deleteHC(&p,&o,&j,strat);
2219 kTest(strat);
2220 if (TEST_OPT_PROT) { PrintS("r"); mflush(); }
2221 if (BVERBOSE(23)) kDebugPrint(strat);
2223 {
2224 if (p!=NULL) p = redMoraNFRing(p,strat, lazyReduce & KSTD_NF_ECART);
2225 }
2226 else
2227 {
2228 if (p!=NULL) p = redMoraNF(p,strat, lazyReduce & KSTD_NF_ECART);
2229 }
2230 if ((p!=NULL)&&((lazyReduce & KSTD_NF_LAZY)==0))
2231 {
2232 if (TEST_OPT_PROT) { PrintS("t"); mflush(); }
2233 p = redtail(p,strat->sl,strat);
2234 }
2235 /*- release temp data------------------------------- -*/
2236 cleanT(strat);
2237 assume(strat->L==NULL); /*strat->L unused */
2238 assume(strat->B==NULL); /*strat->B unused */
2239 omFreeSize((ADDRESS)strat->T,strat->tmax*sizeof(TObject));
2240 omFreeSize((ADDRESS)strat->ecartS,IDELEMS(strat->Shdl)*sizeof(int));
2241 omFreeSize((ADDRESS)strat->sevS,IDELEMS(strat->Shdl)*sizeof(unsigned long));
2242 omFreeSize((ADDRESS)strat->NotUsedAxis,((currRing->N)+1)*sizeof(BOOLEAN));
2243 omFree(strat->sevT);
2244 omFree(strat->S_2_R);
2245 omFree(strat->R);
2246
2247 if ((Q!=NULL)&&(strat->fromQ!=NULL))
2248 {
2249 i=((IDELEMS(Q)+IDELEMS(F)+15)/16)*16;
2250 omFreeSize((ADDRESS)strat->fromQ,i*sizeof(int));
2251 strat->fromQ=NULL;
2252 }
2253 if (strat->kNoether!=NULL) pLmFree(&strat->kNoether);
2254// if ((TEST_OPT_WEIGHTM)&&(F!=NULL))
2255// {
2256// pRestoreDegProcs(currRing,strat->pOrigFDeg, strat->pOrigLDeg);
2257// if (ecartWeights)
2258// {
2259// omFreeSize((ADDRESS *)&ecartWeights,((currRing->N)+1)*sizeof(short));
2260// ecartWeights=NULL;
2261// }
2262// }
2263 idDelete(&strat->Shdl);
2264 SI_RESTORE_OPT1(save1);
2265 if (TEST_OPT_PROT) PrintLn();
2266 return p;
2267}
2268
2269ideal kNF1 (ideal F,ideal Q,ideal q, kStrategy strat, int lazyReduce)
2270{
2271 assume(!idIs0(q));
2272 assume(!(idIs0(F)&&(Q==NULL)));
2273
2274// lazy_reduce flags: can be combined by |
2275//#define KSTD_NF_LAZY 1
2276 // do only a reduction of the leading term
2277//#define KSTD_NF_ECART 2
2278 // only local: reduce even with bad ecart
2279 poly p;
2280 int i;
2281 int j;
2282 int o;
2283 LObject h;
2284 ideal res;
2285 BITSET save1;
2286 SI_SAVE_OPT1(save1);
2287
2288 //if (idIs0(q)) return idInit(IDELEMS(q),si_max(q->rank,F->rank));
2289 //if ((idIs0(F))&&(Q==NULL))
2290 // return idCopy(q); /*F=0*/
2291 //strat->ak = si_max(idRankFreeModule(F),idRankFreeModule(q));
2292 /*- creating temp data structures------------------- -*/
2293 //strat->kAllAxis = (currRing->ppNoether) != NULL;
2294 strat->kNoether=pCopy((currRing->ppNoether));
2297 && (0<Kstd1_deg)
2298 && ((strat->kNoether==NULL)
2300 {
2301 pLmDelete(&strat->kNoether);
2302 strat->kNoether=pOne();
2303 pSetExp(strat->kNoether,1, Kstd1_deg+1);
2304 pSetm(strat->kNoether);
2305 //strat->kAllAxis=TRUE;
2306 }
2307 initBuchMoraCrit(strat);
2309 initBuchMoraPosRing(strat);
2310 else
2311 initBuchMoraPos(strat);
2312 initMora(F,strat);
2313 strat->enterS = enterSMoraNF;
2314 /*- set T -*/
2315 strat->tl = -1;
2316 strat->tmax = setmaxT;
2317 strat->T = initT();
2318 strat->R = initR();
2319 strat->sevT = initsevT();
2320 /*- set S -*/
2321 strat->sl = -1;
2322 /*- init local data struct.-------------------------- -*/
2323 /*Shdl=*/initS(F,Q,strat);
2324 if ((strat->ak!=0)
2325 && (strat->kNoether!=NULL))
2326 {
2327 if (strat->ak!=1)
2328 {
2329 pSetComp(strat->kNoether,1);
2330 pSetmComp(strat->kNoether);
2331 poly p=pHead(strat->kNoether);
2332 pSetComp(p,strat->ak);
2333 pSetmComp(p);
2334 p=pAdd(strat->kNoether,p);
2335 strat->kNoether=pNext(p);
2337 }
2338 }
2339 if (((lazyReduce & KSTD_NF_LAZY)==0)
2340 && (!rField_is_Ring(currRing)))
2341 {
2342 for (i=strat->sl; i>=0; i--)
2343 pNorm(strat->S[i]);
2344 }
2345 /*- compute------------------------------------------- -*/
2346 res=idInit(IDELEMS(q),strat->ak);
2347 for (i=0; i<IDELEMS(q); i++)
2348 {
2349 if (q->m[i]!=NULL)
2350 {
2351 p = pCopy(q->m[i]);
2352 deleteHC(&p,&o,&j,strat);
2353 if (p!=NULL)
2354 {
2355 /*- puts the elements of S also to T -*/
2356 for (j=0; j<=strat->sl; j++)
2357 {
2358 h.p = strat->S[j];
2359 h.ecart = strat->ecartS[j];
2360 h.pLength = h.length = pLength(h.p);
2361 if (strat->sevS[j] == 0) strat->sevS[j] = pGetShortExpVector(h.p);
2362 else assume(strat->sevS[j] == pGetShortExpVector(h.p));
2363 h.sev = strat->sevS[j];
2364 h.SetpFDeg();
2366 enterT_strong(h,strat);
2367 else
2368 enterT(h,strat);
2369 }
2370 if (TEST_OPT_PROT) { PrintS("r"); mflush(); }
2372 {
2373 p = redMoraNFRing(p,strat, lazyReduce);
2374 }
2375 else
2376 p = redMoraNF(p,strat, lazyReduce);
2377 if ((p!=NULL)&&((lazyReduce & KSTD_NF_LAZY)==0))
2378 {
2379 if (TEST_OPT_PROT) { PrintS("t"); mflush(); }
2380 p = redtail(p,strat->sl,strat);
2381 }
2382 cleanT(strat);
2383 }
2384 res->m[i]=p;
2385 }
2386 //else
2387 // res->m[i]=NULL;
2388 }
2389 /*- release temp data------------------------------- -*/
2390 assume(strat->L==NULL); /*strat->L unused */
2391 assume(strat->B==NULL); /*strat->B unused */
2392 omFreeSize((ADDRESS)strat->T,strat->tmax*sizeof(TObject));
2393 omFreeSize((ADDRESS)strat->ecartS,IDELEMS(strat->Shdl)*sizeof(int));
2394 omFreeSize((ADDRESS)strat->sevS,IDELEMS(strat->Shdl)*sizeof(unsigned long));
2395 omFreeSize((ADDRESS)strat->NotUsedAxis,((currRing->N)+1)*sizeof(BOOLEAN));
2396 omFree(strat->sevT);
2397 omFree(strat->S_2_R);
2398 omFree(strat->R);
2399 if ((Q!=NULL)&&(strat->fromQ!=NULL))
2400 {
2402 omFreeSize((ADDRESS)strat->fromQ,i*sizeof(int));
2403 strat->fromQ=NULL;
2404 }
2405 if (strat->kNoether!=NULL) pLmFree(&strat->kNoether);
2406// if ((TEST_OPT_WEIGHTM)&&(F!=NULL))
2407// {
2408// pFDeg=strat->pOrigFDeg;
2409// pLDeg=strat->pOrigLDeg;
2410// if (ecartWeights)
2411// {
2412// omFreeSize((ADDRESS *)&ecartWeights,((currRing->N)+1)*sizeof(short));
2413// ecartWeights=NULL;
2414// }
2415// }
2416 idDelete(&strat->Shdl);
2417 SI_RESTORE_OPT1(save1);
2418 if (TEST_OPT_PROT) PrintLn();
2419 return res;
2420}
2421
2423
2424long kModDeg(poly p, ring r)
2425{
2426 long o=p_WDegree(p, r);
2427 long i=__p_GetComp(p, r);
2428 if (i==0) return o;
2429 //assume((i>0) && (i<=kModW->length()));
2430 if (i<=kModW->length())
2431 return o+(*kModW)[i-1];
2432 return o;
2433}
2434long kHomModDeg(poly p, ring r)
2435{
2436 int i;
2437 long j=0;
2438
2439 for (i=r->N;i>0;i--)
2440 j+=p_GetExp(p,i,r)*(*kHomW)[i-1];
2441 if (kModW == NULL) return j;
2442 i = __p_GetComp(p,r);
2443 if (i==0) return j;
2444 return j+(*kModW)[i-1];
2445}
2446
2447ideal kStd(ideal F, ideal Q, tHomog h,intvec ** w, intvec *hilb,int syzComp,
2448 int newIdeal, intvec *vw, s_poly_proc_t sp)
2449{
2450 if(idIs0(F))
2451 return idInit(1,F->rank);
2452
2453 if((Q!=NULL)&&(idIs0(Q))) Q=NULL;
2454#ifdef HAVE_SHIFTBBA
2455 if(rIsLPRing(currRing)) return kStdShift(F, Q, h, w, hilb, syzComp, newIdeal, vw, FALSE);
2456#endif
2457
2458 ideal r;
2459 BOOLEAN b=currRing->pLexOrder,toReset=FALSE;
2460 BOOLEAN delete_w=(w==NULL);
2461 kStrategy strat=new skStrategy;
2462
2463 strat->s_poly=sp;
2465 strat->syzComp = syzComp;
2466 if (TEST_OPT_SB_1
2468 )
2469 strat->newIdeal = newIdeal;
2471 strat->LazyPass=20;
2472 else
2473 strat->LazyPass=2;
2474 strat->LazyDegree = 1;
2475 strat->ak = id_RankFreeModule(F,currRing);
2476 strat->kModW=kModW=NULL;
2477 strat->kHomW=kHomW=NULL;
2478 if (vw != NULL)
2479 {
2480 currRing->pLexOrder=FALSE;
2481 strat->kHomW=kHomW=vw;
2482 strat->pOrigFDeg = currRing->pFDeg;
2483 strat->pOrigLDeg = currRing->pLDeg;
2485 toReset = TRUE;
2486 }
2487 if (h==testHomog)
2488 {
2489 if (strat->ak == 0)
2490 {
2491 h = (tHomog)idHomIdeal(F,Q);
2492 w=NULL;
2493 }
2494 else if (!TEST_OPT_DEGBOUND)
2495 {
2496 if (w!=NULL)
2497 h = (tHomog)idHomModule(F,Q,w);
2498 else
2499 h = (tHomog)idHomIdeal(F,Q);
2500 }
2501 }
2502 currRing->pLexOrder=b;
2503 if (h==isHomog)
2504 {
2505 if (strat->ak > 0 && (w!=NULL) && (*w!=NULL))
2506 {
2507 strat->kModW = kModW = *w;
2508 if (vw == NULL)
2509 {
2510 strat->pOrigFDeg = currRing->pFDeg;
2511 strat->pOrigLDeg = currRing->pLDeg;
2513 toReset = TRUE;
2514 }
2515 }
2516 currRing->pLexOrder = TRUE;
2517 if (hilb==NULL) strat->LazyPass*=2;
2518 }
2519 strat->homog=h;
2520#ifdef KDEBUG
2521 idTest(F);
2522 if (Q!=NULL) idTest(Q);
2523#endif
2524#ifdef HAVE_PLURAL
2526 {
2527 const BOOLEAN bIsSCA = rIsSCA(currRing) && strat->z2homog; // for Z_2 prod-crit
2528 strat->no_prod_crit = ! bIsSCA;
2529 if (w!=NULL)
2530 r = nc_GB(F, Q, *w, hilb, strat, currRing);
2531 else
2532 r = nc_GB(F, Q, NULL, hilb, strat, currRing);
2533 }
2534 else
2535#endif
2536 {
2537 #if PRE_INTEGER_CHECK
2538 //the preinteger check strategy is not for modules
2539 if(nCoeff_is_Z(currRing->cf) && strat->ak <= 0)
2540 {
2541 ideal FCopy = idCopy(F);
2542 poly pFmon = preIntegerCheck(FCopy, Q);
2543 if(pFmon != NULL)
2544 {
2545 idInsertPoly(FCopy, pFmon);
2546 strat->kModW=kModW=NULL;
2547 if (h==testHomog)
2548 {
2549 if (strat->ak == 0)
2550 {
2551 h = (tHomog)idHomIdeal(FCopy,Q);
2552 w=NULL;
2553 }
2554 else if (!TEST_OPT_DEGBOUND)
2555 {
2556 if (w!=NULL)
2557 h = (tHomog)idHomModule(FCopy,Q,w);
2558 else
2559 h = (tHomog)idHomIdeal(FCopy,Q);
2560 }
2561 }
2562 currRing->pLexOrder=b;
2563 if (h==isHomog)
2564 {
2565 if (strat->ak > 0 && (w!=NULL) && (*w!=NULL))
2566 {
2567 strat->kModW = kModW = *w;
2568 if (vw == NULL)
2569 {
2570 strat->pOrigFDeg = currRing->pFDeg;
2571 strat->pOrigLDeg = currRing->pLDeg;
2573 toReset = TRUE;
2574 }
2575 }
2576 currRing->pLexOrder = TRUE;
2577 if (hilb==NULL) strat->LazyPass*=2;
2578 }
2579 strat->homog=h;
2580 }
2581 omTestMemory(1);
2582 if(w == NULL)
2583 {
2585 r=mora(FCopy,Q,NULL,hilb,strat);
2586 else
2587 r=bba(FCopy,Q,NULL,hilb,strat);
2588 }
2589 else
2590 {
2592 r=mora(FCopy,Q,*w,hilb,strat);
2593 else
2594 r=bba(FCopy,Q,*w,hilb,strat);
2595 }
2596 idDelete(&FCopy);
2597 }
2598 else
2599 #endif
2600 {
2601 if(w==NULL)
2602 {
2604 r=mora(F,Q,NULL,hilb,strat);
2605 else
2606 r=bba(F,Q,NULL,hilb,strat);
2607 }
2608 else
2609 {
2611 r=mora(F,Q,*w,hilb,strat);
2612 else
2613 r=bba(F,Q,*w,hilb,strat);
2614 }
2615 }
2616 }
2617#ifdef KDEBUG
2618 idTest(r);
2619#endif
2620 if (toReset)
2621 {
2622 kModW = NULL;
2624 }
2625 currRing->pLexOrder = b;
2626//Print("%d reductions canceled \n",strat->cel);
2627 delete(strat);
2628 if ((delete_w)&&(w!=NULL)&&(*w!=NULL)) delete *w;
2629 return r;
2630}
2631
2632ideal kSba(ideal F, ideal Q, tHomog h,intvec ** w, int sbaOrder, int arri, intvec *hilb,int syzComp,
2633 int newIdeal, intvec *vw)
2634{
2635 if(idIs0(F))
2636 return idInit(1,F->rank);
2638 {
2639 ideal r;
2640 BOOLEAN b=currRing->pLexOrder,toReset=FALSE;
2641 BOOLEAN delete_w=(w==NULL);
2642 kStrategy strat=new skStrategy;
2643 strat->sbaOrder = sbaOrder;
2644 if (arri!=0)
2645 {
2646 strat->rewCrit1 = arriRewDummy;
2647 strat->rewCrit2 = arriRewCriterion;
2649 }
2650 else
2651 {
2655 }
2656
2658 strat->syzComp = syzComp;
2659 if (TEST_OPT_SB_1)
2660 //if(!rField_is_Ring(currRing)) // always true here
2661 strat->newIdeal = newIdeal;
2663 strat->LazyPass=20;
2664 else
2665 strat->LazyPass=2;
2666 strat->LazyDegree = 1;
2670 strat->ak = id_RankFreeModule(F,currRing);
2671 strat->kModW=kModW=NULL;
2672 strat->kHomW=kHomW=NULL;
2673 if (vw != NULL)
2674 {
2675 currRing->pLexOrder=FALSE;
2676 strat->kHomW=kHomW=vw;
2677 strat->pOrigFDeg = currRing->pFDeg;
2678 strat->pOrigLDeg = currRing->pLDeg;
2680 toReset = TRUE;
2681 }
2682 if (h==testHomog)
2683 {
2684 if (strat->ak == 0)
2685 {
2686 h = (tHomog)idHomIdeal(F,Q);
2687 w=NULL;
2688 }
2689 else if (!TEST_OPT_DEGBOUND)
2690 {
2691 if (w!=NULL)
2692 h = (tHomog)idHomModule(F,Q,w);
2693 else
2694 h = (tHomog)idHomIdeal(F,Q);
2695 }
2696 }
2697 currRing->pLexOrder=b;
2698 if (h==isHomog)
2699 {
2700 if (strat->ak > 0 && (w!=NULL) && (*w!=NULL))
2701 {
2702 strat->kModW = kModW = *w;
2703 if (vw == NULL)
2704 {
2705 strat->pOrigFDeg = currRing->pFDeg;
2706 strat->pOrigLDeg = currRing->pLDeg;
2708 toReset = TRUE;
2709 }
2710 }
2711 currRing->pLexOrder = TRUE;
2712 if (hilb==NULL) strat->LazyPass*=2;
2713 }
2714 strat->homog=h;
2715 #ifdef KDEBUG
2716 idTest(F);
2717 if(Q != NULL)
2718 idTest(Q);
2719 #endif
2720 #ifdef HAVE_PLURAL
2722 {
2723 const BOOLEAN bIsSCA = rIsSCA(currRing) && strat->z2homog; // for Z_2 prod-crit
2724 strat->no_prod_crit = ! bIsSCA;
2725 if (w!=NULL)
2726 r = nc_GB(F, Q, *w, hilb, strat, currRing);
2727 else
2728 r = nc_GB(F, Q, NULL, hilb, strat, currRing);
2729 }
2730 else
2731 #endif
2732 {
2734 {
2735 if (w!=NULL)
2736 r=mora(F,Q,*w,hilb,strat);
2737 else
2738 r=mora(F,Q,NULL,hilb,strat);
2739 }
2740 else
2741 {
2742 strat->sigdrop = FALSE;
2743 if (w!=NULL)
2744 r=sba(F,Q,*w,hilb,strat);
2745 else
2746 r=sba(F,Q,NULL,hilb,strat);
2747 }
2748 }
2749 #ifdef KDEBUG
2750 idTest(r);
2751 #endif
2752 if (toReset)
2753 {
2754 kModW = NULL;
2756 }
2757 currRing->pLexOrder = b;
2758 //Print("%d reductions canceled \n",strat->cel);
2759 //delete(strat);
2760 if ((delete_w)&&(w!=NULL)&&(*w!=NULL)) delete *w;
2761 return r;
2762 }
2763 else
2764 {
2765 //--------------------------RING CASE-------------------------
2766 assume(sbaOrder == 1);
2767 assume(arri == 0);
2768 ideal r;
2769 r = idCopy(F);
2770 int sbaEnterS = -1;
2771 bool sigdrop = TRUE;
2772 //This is how we set the SBA algorithm;
2773 int totalsbaruns = 1,blockedreductions = 20,blockred = 0,loops = 0;
2774 while(sigdrop && (loops < totalsbaruns || totalsbaruns == -1)
2775 && (blockred <= blockedreductions))
2776 {
2777 loops++;
2778 if(loops == 1)
2779 sigdrop = FALSE;
2780 BOOLEAN b=currRing->pLexOrder,toReset=FALSE;
2781 BOOLEAN delete_w=(w==NULL);
2782 kStrategy strat=new skStrategy;
2783 strat->sbaEnterS = sbaEnterS;
2784 strat->sigdrop = sigdrop;
2785 #if 0
2786 strat->blockred = blockred;
2787 #else
2788 strat->blockred = 0;
2789 #endif
2790 strat->blockredmax = blockedreductions;
2791 //printf("\nsbaEnterS beginning = %i\n",strat->sbaEnterS);
2792 //printf("\nsigdrop beginning = %i\n",strat->sigdrop);
2793 strat->sbaOrder = sbaOrder;
2794 if (arri!=0)
2795 {
2796 strat->rewCrit1 = arriRewDummy;
2797 strat->rewCrit2 = arriRewCriterion;
2799 }
2800 else
2801 {
2805 }
2806
2808 strat->syzComp = syzComp;
2809 if (TEST_OPT_SB_1)
2811 strat->newIdeal = newIdeal;
2813 strat->LazyPass=20;
2814 else
2815 strat->LazyPass=2;
2816 strat->LazyDegree = 1;
2820 strat->ak = id_RankFreeModule(F,currRing);
2821 strat->kModW=kModW=NULL;
2822 strat->kHomW=kHomW=NULL;
2823 if (vw != NULL)
2824 {
2825 currRing->pLexOrder=FALSE;
2826 strat->kHomW=kHomW=vw;
2827 strat->pOrigFDeg = currRing->pFDeg;
2828 strat->pOrigLDeg = currRing->pLDeg;
2830 toReset = TRUE;
2831 }
2832 if (h==testHomog)
2833 {
2834 if (strat->ak == 0)
2835 {
2836 h = (tHomog)idHomIdeal(F,Q);
2837 w=NULL;
2838 }
2839 else if (!TEST_OPT_DEGBOUND)
2840 {
2841 if (w!=NULL)
2842 h = (tHomog)idHomModule(F,Q,w);
2843 else
2844 h = (tHomog)idHomIdeal(F,Q);
2845 }
2846 }
2847 currRing->pLexOrder=b;
2848 if (h==isHomog)
2849 {
2850 if (strat->ak > 0 && (w!=NULL) && (*w!=NULL))
2851 {
2852 strat->kModW = kModW = *w;
2853 if (vw == NULL)
2854 {
2855 strat->pOrigFDeg = currRing->pFDeg;
2856 strat->pOrigLDeg = currRing->pLDeg;
2858 toReset = TRUE;
2859 }
2860 }
2861 currRing->pLexOrder = TRUE;
2862 if (hilb==NULL) strat->LazyPass*=2;
2863 }
2864 strat->homog=h;
2865 #ifdef KDEBUG
2866 idTest(F);
2867 if(Q != NULL)
2868 idTest(Q);
2869 #endif
2870 #ifdef HAVE_PLURAL
2872 {
2873 const BOOLEAN bIsSCA = rIsSCA(currRing) && strat->z2homog; // for Z_2 prod-crit
2874 strat->no_prod_crit = ! bIsSCA;
2875 if (w!=NULL)
2876 r = nc_GB(F, Q, *w, hilb, strat, currRing);
2877 else
2878 r = nc_GB(F, Q, NULL, hilb, strat, currRing);
2879 }
2880 else
2881 #endif
2882 {
2884 {
2885 if (w!=NULL)
2886 r=mora(F,Q,*w,hilb,strat);
2887 else
2888 r=mora(F,Q,NULL,hilb,strat);
2889 }
2890 else
2891 {
2892 if (w!=NULL)
2893 r=sba(r,Q,*w,hilb,strat);
2894 else
2895 {
2896 r=sba(r,Q,NULL,hilb,strat);
2897 }
2898 }
2899 }
2900 #ifdef KDEBUG
2901 idTest(r);
2902 #endif
2903 if (toReset)
2904 {
2905 kModW = NULL;
2907 }
2908 currRing->pLexOrder = b;
2909 //Print("%d reductions canceled \n",strat->cel);
2910 sigdrop = strat->sigdrop;
2911 sbaEnterS = strat->sbaEnterS;
2912 blockred = strat->blockred;
2913 delete(strat);
2914 if ((delete_w)&&(w!=NULL)&&(*w!=NULL)) delete *w;
2915 }
2916 // Go to std
2917 if(sigdrop || blockred > blockedreductions)
2918 {
2919 r = kStd(r, Q, h, w, hilb, syzComp, newIdeal, vw);
2920 }
2921 return r;
2922 }
2923}
2924
2925#ifdef HAVE_SHIFTBBA
2926ideal kStdShift(ideal F, ideal Q, tHomog h,intvec ** w, intvec *hilb,int syzComp,
2927 int newIdeal, intvec *vw, BOOLEAN rightGB)
2928{
2930 assume(idIsInV(F));
2931 ideal r;
2932 BOOLEAN b=currRing->pLexOrder,toReset=FALSE;
2933 BOOLEAN delete_w=(w==NULL);
2934 kStrategy strat=new skStrategy;
2935 intvec* temp_w=NULL;
2936
2937 strat->rightGB = rightGB;
2938
2940 strat->syzComp = syzComp;
2941 if (TEST_OPT_SB_1)
2943 strat->newIdeal = newIdeal;
2945 strat->LazyPass=20;
2946 else
2947 strat->LazyPass=2;
2948 strat->LazyDegree = 1;
2949 strat->ak = id_RankFreeModule(F,currRing);
2950 strat->kModW=kModW=NULL;
2951 strat->kHomW=kHomW=NULL;
2952 if (vw != NULL)
2953 {
2954 currRing->pLexOrder=FALSE;
2955 strat->kHomW=kHomW=vw;
2956 strat->pOrigFDeg = currRing->pFDeg;
2957 strat->pOrigLDeg = currRing->pLDeg;
2959 toReset = TRUE;
2960 }
2961 if (h==testHomog)
2962 {
2963 if (strat->ak == 0)
2964 {
2965 h = (tHomog)idHomIdeal(F,Q);
2966 w=NULL;
2967 }
2968 else if (!TEST_OPT_DEGBOUND)
2969 {
2970 if (w!=NULL)
2971 h = (tHomog)idHomModule(F,Q,w);
2972 else
2973 h = (tHomog)idHomIdeal(F,Q);
2974 }
2975 }
2976 currRing->pLexOrder=b;
2977 if (h==isHomog)
2978 {
2979 if (strat->ak > 0 && (w!=NULL) && (*w!=NULL))
2980 {
2981 strat->kModW = kModW = *w;
2982 if (vw == NULL)
2983 {
2984 strat->pOrigFDeg = currRing->pFDeg;
2985 strat->pOrigLDeg = currRing->pLDeg;
2987 toReset = TRUE;
2988 }
2989 }
2990 currRing->pLexOrder = TRUE;
2991 if (hilb==NULL) strat->LazyPass*=2;
2992 }
2993 strat->homog=h;
2994#ifdef KDEBUG
2995 idTest(F);
2996#endif
2998 {
2999 /* error: no local ord yet with shifts */
3000 WerrorS("No local ordering possible for shift algebra");
3001 return(NULL);
3002 }
3003 else
3004 {
3005 /* global ordering */
3006 if (w!=NULL)
3007 r=bbaShift(F,Q,*w,hilb,strat);
3008 else
3009 r=bbaShift(F,Q,NULL,hilb,strat);
3010 }
3011#ifdef KDEBUG
3012 idTest(r);
3013#endif
3014 if (toReset)
3015 {
3016 kModW = NULL;
3018 }
3019 currRing->pLexOrder = b;
3020//Print("%d reductions canceled \n",strat->cel);
3021 delete(strat);
3022 if ((delete_w)&&(w!=NULL)&&(*w!=NULL)) delete *w;
3023 assume(idIsInV(r));
3024 return r;
3025}
3026#endif
3027
3028//##############################################################
3029//##############################################################
3030//##############################################################
3031//##############################################################
3032//##############################################################
3033
3034ideal kMin_std(ideal F, ideal Q, tHomog h,intvec ** w, ideal &M, intvec *hilb,
3035 int syzComp, int reduced)
3036{
3037 if(idIs0(F))
3038 {
3039 M=idInit(1,F->rank);
3040 return idInit(1,F->rank);
3041 }
3043 {
3044 ideal sb;
3045 sb = kStd(F, Q, h, w, hilb);
3046 idSkipZeroes(sb);
3047 if(IDELEMS(sb) <= IDELEMS(F))
3048 {
3049 M = idCopy(sb);
3050 idSkipZeroes(M);
3051 return(sb);
3052 }
3053 else
3054 {
3055 M = idCopy(F);
3056 idSkipZeroes(M);
3057 return(sb);
3058 }
3059 }
3060 ideal r=NULL;
3061 int Kstd1_OldDeg = Kstd1_deg,i;
3062 intvec* temp_w=NULL;
3063 BOOLEAN b=currRing->pLexOrder,toReset=FALSE;
3064 BOOLEAN delete_w=(w==NULL);
3065 BOOLEAN oldDegBound=TEST_OPT_DEGBOUND;
3066 kStrategy strat=new skStrategy;
3067
3069 strat->syzComp = syzComp;
3071 strat->LazyPass=20;
3072 else
3073 strat->LazyPass=2;
3074 strat->LazyDegree = 1;
3075 strat->minim=(reduced % 2)+1;
3076 strat->ak = id_RankFreeModule(F,currRing);
3077 if (delete_w)
3078 {
3079 temp_w=new intvec((strat->ak)+1);
3080 w = &temp_w;
3081 }
3082 if (h==testHomog)
3083 {
3084 if (strat->ak == 0)
3085 {
3086 h = (tHomog)idHomIdeal(F,Q);
3087 w=NULL;
3088 }
3089 else
3090 {
3091 h = (tHomog)idHomModule(F,Q,w);
3092 }
3093 }
3094 if (h==isHomog)
3095 {
3096 if (strat->ak > 0 && (w!=NULL) && (*w!=NULL))
3097 {
3098 kModW = *w;
3099 strat->kModW = *w;
3100 assume(currRing->pFDeg != NULL && currRing->pLDeg != NULL);
3101 strat->pOrigFDeg = currRing->pFDeg;
3102 strat->pOrigLDeg = currRing->pLDeg;
3104
3105 toReset = TRUE;
3106 if (reduced>1)
3107 {
3108 Kstd1_OldDeg=Kstd1_deg;
3109 Kstd1_deg = -1;
3110 for (i=IDELEMS(F)-1;i>=0;i--)
3111 {
3112 if ((F->m[i]!=NULL) && (currRing->pFDeg(F->m[i],currRing)>=Kstd1_deg))
3113 Kstd1_deg = currRing->pFDeg(F->m[i],currRing)+1;
3114 }
3115 }
3116 }
3117 currRing->pLexOrder = TRUE;
3118 strat->LazyPass*=2;
3119 }
3120 strat->homog=h;
3122 {
3123 if (w!=NULL)
3124 r=mora(F,Q,*w,hilb,strat);
3125 else
3126 r=mora(F,Q,NULL,hilb,strat);
3127 }
3128 else
3129 {
3130 if (w!=NULL)
3131 r=bba(F,Q,*w,hilb,strat);
3132 else
3133 r=bba(F,Q,NULL,hilb,strat);
3134 }
3135#ifdef KDEBUG
3136 {
3137 int i;
3138 for (i=IDELEMS(r)-1; i>=0; i--) pTest(r->m[i]);
3139 }
3140#endif
3141 idSkipZeroes(r);
3142 if (toReset)
3143 {
3145 kModW = NULL;
3146 }
3147 currRing->pLexOrder = b;
3148 if ((delete_w)&&(temp_w!=NULL)) delete temp_w;
3149 if ((IDELEMS(r)==1) && (r->m[0]!=NULL) && pIsConstant(r->m[0]) && (strat->ak==0))
3150 {
3151 M=idInit(1,F->rank);
3152 M->m[0]=pOne();
3153 //if (strat->ak!=0) { pSetComp(M->m[0],strat->ak); pSetmComp(M->m[0]); }
3154 if (strat->M!=NULL) idDelete(&strat->M);
3155 }
3156 else if (strat->M==NULL)
3157 {
3158 M=idInit(1,F->rank);
3159 WarnS("no minimal generating set computed");
3160 }
3161 else
3162 {
3163 idSkipZeroes(strat->M);
3164 M=strat->M;
3165 }
3166 delete(strat);
3167 if (reduced>2)
3168 {
3169 Kstd1_deg=Kstd1_OldDeg;
3170 if (!oldDegBound)
3171 si_opt_1 &= ~Sy_bit(OPT_DEGBOUND);
3172 }
3173 else
3174 {
3175 if (IDELEMS(M)>IDELEMS(r)) {
3176 idDelete(&M);
3177 M=idCopy(r); }
3178 }
3179 return r;
3180}
3181
3182poly kNF(ideal F, ideal Q, poly p,int syzComp, int lazyReduce)
3183{
3184 if (p==NULL)
3185 return NULL;
3186
3187 poly pp = p;
3188
3189#ifdef HAVE_PLURAL
3190 if(rIsSCA(currRing))
3191 {
3192 const unsigned int m_iFirstAltVar = scaFirstAltVar(currRing);
3193 const unsigned int m_iLastAltVar = scaLastAltVar(currRing);
3194 pp = p_KillSquares(pp, m_iFirstAltVar, m_iLastAltVar, currRing);
3195
3196 if(Q == currRing->qideal)
3198 }
3199#endif
3200 if((Q!=NULL) &&(idIs0(Q))) Q=NULL;
3201
3202 if ((idIs0(F))&&(Q==NULL))
3203 {
3204#ifdef HAVE_PLURAL
3205 if(p != pp)
3206 return pp;
3207#endif
3208 return pCopy(p); /*F+Q=0*/
3209 }
3210
3211 kStrategy strat=new skStrategy;
3212 strat->syzComp = syzComp;
3214 poly res;
3215
3217 {
3218#ifdef HAVE_SHIFTBBA
3219 if (currRing->isLPring)
3220 {
3221 WerrorS("No local ordering possible for shift algebra");
3222 return(NULL);
3223 }
3224#endif
3225 res=kNF1(F,Q,pp,strat,lazyReduce);
3226 }
3227 else
3228 res=kNF2(F,Q,pp,strat,lazyReduce);
3229 delete(strat);
3230
3231#ifdef HAVE_PLURAL
3232 if(pp != p)
3233 p_Delete(&pp, currRing);
3234#endif
3235 return res;
3236}
3237
3238poly kNFBound(ideal F, ideal Q, poly p,int bound,int syzComp, int lazyReduce)
3239{
3240 if (p==NULL)
3241 return NULL;
3242
3243 poly pp = p;
3244
3245#ifdef HAVE_PLURAL
3246 if(rIsSCA(currRing))
3247 {
3248 const unsigned int m_iFirstAltVar = scaFirstAltVar(currRing);
3249 const unsigned int m_iLastAltVar = scaLastAltVar(currRing);
3250 pp = p_KillSquares(pp, m_iFirstAltVar, m_iLastAltVar, currRing);
3251
3252 if(Q == currRing->qideal)
3254 }
3255#endif
3256
3257 if ((idIs0(F))&&(Q==NULL))
3258 {
3259#ifdef HAVE_PLURAL
3260 if(p != pp)
3261 return pp;
3262#endif
3263 return pCopy(p); /*F+Q=0*/
3264 }
3265
3266 kStrategy strat=new skStrategy;
3267 strat->syzComp = syzComp;
3269 poly res;
3270 res=kNF2Bound(F,Q,pp,bound,strat,lazyReduce);
3271 delete(strat);
3272
3273#ifdef HAVE_PLURAL
3274 if(pp != p)
3275 p_Delete(&pp, currRing);
3276#endif
3277 return res;
3278}
3279
3280ideal kNF(ideal F, ideal Q, ideal p,int syzComp,int lazyReduce)
3281{
3282 ideal res;
3283 if (TEST_OPT_PROT)
3284 {
3285 Print("(S:%d)",IDELEMS(p));mflush();
3286 }
3287 if (idIs0(p))
3288 return idInit(IDELEMS(p),si_max(p->rank,F->rank));
3289
3290 ideal pp = p;
3291#ifdef HAVE_PLURAL
3292 if(rIsSCA(currRing))
3293 {
3294 const unsigned int m_iFirstAltVar = scaFirstAltVar(currRing);
3295 const unsigned int m_iLastAltVar = scaLastAltVar(currRing);
3296 pp = id_KillSquares(pp, m_iFirstAltVar, m_iLastAltVar, currRing, false);
3297
3298 if(Q == currRing->qideal)
3300 }
3301#endif
3302
3303 if ((Q!=NULL)&&(idIs0(Q))) Q=NULL;
3304
3305 if ((idIs0(F))&&(Q==NULL))
3306 {
3307#ifdef HAVE_PLURAL
3308 if(p != pp)
3309 return pp;
3310#endif
3311 return idCopy(p); /*F+Q=0*/
3312 }
3313
3314 kStrategy strat=new skStrategy;
3315 strat->syzComp = syzComp;
3317 if (strat->ak>0) // only for module case, see Tst/Short/bug_reduce.tst
3318 {
3319 strat->ak = si_max(strat->ak,(int)F->rank);
3320 }
3321
3323 {
3324#ifdef HAVE_SHIFTBBA
3325 if (currRing->isLPring)
3326 {
3327 WerrorS("No local ordering possible for shift algebra");
3328 return(NULL);
3329 }
3330#endif
3331 res=kNF1(F,Q,pp,strat,lazyReduce);
3332 }
3333 else
3334 res=kNF2(F,Q,pp,strat,lazyReduce);
3335 delete(strat);
3336
3337#ifdef HAVE_PLURAL
3338 if(pp != p)
3340#endif
3341
3342 return res;
3343}
3344
3345ideal kNFBound(ideal F, ideal Q, ideal p,int bound,int syzComp,int lazyReduce)
3346{
3347 ideal res;
3348 if (TEST_OPT_PROT)
3349 {
3350 Print("(S:%d)",IDELEMS(p));mflush();
3351 }
3352 if (idIs0(p))
3353 return idInit(IDELEMS(p),si_max(p->rank,F->rank));
3354
3355 ideal pp = p;
3356#ifdef HAVE_PLURAL
3357 if(rIsSCA(currRing))
3358 {
3359 const unsigned int m_iFirstAltVar = scaFirstAltVar(currRing);
3360 const unsigned int m_iLastAltVar = scaLastAltVar(currRing);
3361 pp = id_KillSquares(pp, m_iFirstAltVar, m_iLastAltVar, currRing, false);
3362
3363 if(Q == currRing->qideal)
3365 }
3366#endif
3367
3368 if ((idIs0(F))&&(Q==NULL))
3369 {
3370#ifdef HAVE_PLURAL
3371 if(p != pp)
3372 return pp;
3373#endif
3374 return idCopy(p); /*F+Q=0*/
3375 }
3376
3377 kStrategy strat=new skStrategy;
3378 strat->syzComp = syzComp;
3380 if (strat->ak>0) // only for module case, see Tst/Short/bug_reduce.tst
3381 {
3382 strat->ak = si_max(strat->ak,(int)F->rank);
3383 }
3384
3385 res=kNF2Bound(F,Q,pp,bound,strat,lazyReduce);
3386 delete(strat);
3387
3388#ifdef HAVE_PLURAL
3389 if(pp != p)
3391#endif
3392
3393 return res;
3394}
3395
3396poly k_NF (ideal F, ideal Q, poly p,int syzComp, int lazyReduce, const ring _currRing)
3397{
3398 const ring save = currRing;
3399 if( currRing != _currRing ) rChangeCurrRing(_currRing);
3400 poly ret = kNF(F, Q, p, syzComp, lazyReduce);
3401 if( currRing != save ) rChangeCurrRing(save);
3402 return ret;
3403}
3404
3405/*2
3406*interreduces F
3407*/
3408// old version
3409ideal kInterRedOld (ideal F, ideal Q)
3410{
3411 int j;
3412 kStrategy strat = new skStrategy;
3413
3414 ideal tempF = F;
3415 ideal tempQ = Q;
3416
3417#ifdef HAVE_PLURAL
3418 if(rIsSCA(currRing))
3419 {
3420 const unsigned int m_iFirstAltVar = scaFirstAltVar(currRing);
3421 const unsigned int m_iLastAltVar = scaLastAltVar(currRing);
3422 tempF = id_KillSquares(F, m_iFirstAltVar, m_iLastAltVar, currRing);
3423
3424 // this should be done on the upper level!!! :
3425 // tempQ = SCAQuotient(currRing);
3426
3427 if(Q == currRing->qideal)
3428 tempQ = SCAQuotient(currRing);
3429 }
3430#endif
3431
3432// if (TEST_OPT_PROT)
3433// {
3434// writeTime("start InterRed:");
3435// mflush();
3436// }
3437 //strat->syzComp = 0;
3438 strat->kAllAxis = (currRing->ppNoether) != NULL;
3439 strat->kNoether=pCopy((currRing->ppNoether));
3440 strat->ak = id_RankFreeModule(tempF,currRing);
3441 initBuchMoraCrit(strat);
3442 strat->NotUsedAxis = (BOOLEAN *)omAlloc(((currRing->N)+1)*sizeof(BOOLEAN));
3443 for (j=(currRing->N); j>0; j--) strat->NotUsedAxis[j] = TRUE;
3444 strat->enterS = enterSBba;
3445 strat->posInT = posInT17;
3446 strat->initEcart = initEcartNormal;
3447 strat->sl = -1;
3448 strat->tl = -1;
3449 strat->tmax = setmaxT;
3450 strat->T = initT();
3451 strat->R = initR();
3452 strat->sevT = initsevT();
3454 initS(tempF, tempQ, strat);
3455 if (TEST_OPT_REDSB)
3456 strat->noTailReduction=FALSE;
3457 updateS(TRUE,strat);
3459 completeReduce(strat);
3460 //else if (TEST_OPT_PROT) PrintLn();
3461 cleanT(strat);
3462 if (strat->kNoether!=NULL) pLmFree(&strat->kNoether);
3463 omFreeSize((ADDRESS)strat->T,strat->tmax*sizeof(TObject));
3464 omFreeSize((ADDRESS)strat->ecartS,IDELEMS(strat->Shdl)*sizeof(int));
3465 omFreeSize((ADDRESS)strat->sevS,IDELEMS(strat->Shdl)*sizeof(unsigned long));
3466 omFreeSize((ADDRESS)strat->NotUsedAxis,((currRing->N)+1)*sizeof(BOOLEAN));
3467 omfree(strat->sevT);
3468 omfree(strat->S_2_R);
3469 omfree(strat->R);
3470
3471 if (strat->fromQ)
3472 {
3473 for (j=IDELEMS(strat->Shdl)-1;j>=0;j--)
3474 {
3475 if(strat->fromQ[j]) pDelete(&strat->Shdl->m[j]);
3476 }
3477 omFreeSize((ADDRESS)strat->fromQ,IDELEMS(strat->Shdl)*sizeof(int));
3478 }
3479// if (TEST_OPT_PROT)
3480// {
3481// writeTime("end Interred:");
3482// mflush();
3483// }
3484 ideal shdl=strat->Shdl;
3485 idSkipZeroes(shdl);
3486 if (strat->fromQ)
3487 {
3488 strat->fromQ=NULL;
3489 ideal res=kInterRed(shdl,NULL);
3490 idDelete(&shdl);
3491 shdl=res;
3492 }
3493 delete(strat);
3494#ifdef HAVE_PLURAL
3495 if( tempF != F )
3496 id_Delete( &tempF, currRing);
3497#endif
3498 return shdl;
3499}
3500// new version
3501ideal kInterRedBba (ideal F, ideal Q, int &need_retry)
3502{
3503 need_retry=0;
3504 int red_result = 1;
3505 int olddeg,reduc;
3506 BOOLEAN withT = FALSE;
3507 // BOOLEAN toReset=FALSE;
3508 kStrategy strat=new skStrategy;
3509 tHomog h;
3510
3512 strat->LazyPass=20;
3513 else
3514 strat->LazyPass=2;
3515 strat->LazyDegree = 1;
3516 strat->ak = id_RankFreeModule(F,currRing);
3517 strat->syzComp = strat->ak;
3518 strat->kModW=kModW=NULL;
3519 strat->kHomW=kHomW=NULL;
3520 if (strat->ak == 0)
3521 {
3522 h = (tHomog)idHomIdeal(F,Q);
3523 }
3524 else if (!TEST_OPT_DEGBOUND)
3525 {
3526 h = (tHomog)idHomIdeal(F,Q);
3527 }
3528 else
3529 h = isNotHomog;
3530 if (h==isHomog)
3531 {
3532 strat->LazyPass*=2;
3533 }
3534 strat->homog=h;
3535#ifdef KDEBUG
3536 idTest(F);
3537#endif
3538
3539 initBuchMoraCrit(strat); /*set Gebauer, honey, sugarCrit*/
3541 initBuchMoraPosRing(strat);
3542 else
3543 initBuchMoraPos(strat);
3544 initBba(strat);
3545 /*set enterS, spSpolyShort, reduce, red, initEcart, initEcartPair*/
3546 strat->posInL=posInL0; /* ord according pComp */
3547
3548 /*Shdl=*/initBuchMora(F, Q, strat);
3549 reduc = olddeg = 0;
3550
3551#ifndef NO_BUCKETS
3553 strat->use_buckets = 1;
3554#endif
3555
3556 // redtailBBa against T for inhomogeneous input
3557 if (!TEST_OPT_OLDSTD)
3558 withT = ! strat->homog;
3559
3560 // strat->posInT = posInT_pLength;
3561 kTest_TS(strat);
3562
3563#ifdef HAVE_TAIL_RING
3565#endif
3566
3567 /* compute------------------------------------------------------- */
3568 while (strat->Ll >= 0)
3569 {
3570 #ifdef KDEBUG
3571 if (TEST_OPT_DEBUG) messageSets(strat);
3572 #endif
3573 if (strat->Ll== 0) strat->interpt=TRUE;
3574 /* picks the last element from the lazyset L */
3575 strat->P = strat->L[strat->Ll];
3576 strat->Ll--;
3577
3578 if (strat->P.p1 == NULL)
3579 {
3580 // for input polys, prepare reduction
3581 strat->P.PrepareRed(strat->use_buckets);
3582 }
3583
3584 if (strat->P.p == NULL && strat->P.t_p == NULL)
3585 {
3586 red_result = 0;
3587 }
3588 else
3589 {
3590 if (TEST_OPT_PROT)
3591 message(strat->P.pFDeg(),
3592 &olddeg,&reduc,strat, red_result);
3593
3594 /* reduction of the element chosen from L */
3595 red_result = strat->red(&strat->P,strat);
3596 }
3597
3598 // reduction to non-zero new poly
3599 if (red_result == 1)
3600 {
3601 /* statistic */
3602 if (TEST_OPT_PROT) PrintS("s");
3603
3604 // get the polynomial (canonicalize bucket, make sure P.p is set)
3605 strat->P.GetP(strat->lmBin);
3606
3607 int pos=posInS(strat,strat->sl,strat->P.p,strat->P.ecart);
3608
3609 // reduce the tail and normalize poly
3610 // in the ring case we cannot expect LC(f) = 1,
3611 // therefore we call pCleardenom instead of pNorm
3613 {
3614 strat->P.pCleardenom();
3615 if (0)
3616 //if ((TEST_OPT_REDSB)||(TEST_OPT_REDTAIL))
3617 {
3618 strat->P.p = redtailBba(&(strat->P),pos-1,strat, withT);
3619 strat->P.pCleardenom();
3620 }
3621 }
3622 else
3623 {
3624 strat->P.pNorm();
3625 if (0)
3626 //if ((TEST_OPT_REDSB)||(TEST_OPT_REDTAIL))
3627 strat->P.p = redtailBba(&(strat->P),pos-1,strat, withT);
3628 }
3629
3630#ifdef KDEBUG
3631 if (TEST_OPT_DEBUG){PrintS("new s:");strat->P.wrp();PrintLn();}
3632#endif
3633
3634 // enter into S, L, and T
3635 if ((!TEST_OPT_IDLIFT) || (pGetComp(strat->P.p) <= strat->syzComp))
3636 {
3637 enterT(strat->P, strat);
3638 // posInS only depends on the leading term
3639 strat->enterS(strat->P, pos, strat, strat->tl);
3640
3641 if (pos<strat->sl)
3642 {
3643 need_retry++;
3644 // move all "larger" elements fromS to L
3645 // remove them from T
3646 int ii=pos+1;
3647 for(;ii<=strat->sl;ii++)
3648 {
3649 LObject h;
3650 h.Clear();
3651 h.tailRing=strat->tailRing;
3652 h.p=strat->S[ii]; strat->S[ii]=NULL;
3653 strat->initEcart(&h);
3654 h.sev=strat->sevS[ii];
3655 int jj=strat->tl;
3656 while (jj>=0)
3657 {
3658 if (strat->T[jj].p==h.p)
3659 {
3660 strat->T[jj].p=NULL;
3661 if (jj<strat->tl)
3662 {
3663 memmove(&(strat->T[jj]),&(strat->T[jj+1]),
3664 (strat->tl-jj)*sizeof(strat->T[jj]));
3665 memmove(&(strat->sevT[jj]),&(strat->sevT[jj+1]),
3666 (strat->tl-jj)*sizeof(strat->sevT[jj]));
3667 }
3668 strat->tl--;
3669 break;
3670 }
3671 jj--;
3672 }
3673 int lpos=strat->posInL(strat->L,strat->Ll,&h,strat);
3674 enterL(&strat->L,&strat->Ll,&strat->Lmax,h,lpos);
3675 #ifdef KDEBUG
3676 if (TEST_OPT_DEBUG)
3677 {
3678 Print("move S[%d] -> L[%d]: ",ii,pos);
3679 p_wrp(h.p,currRing, strat->tailRing);
3680 PrintLn();
3681 }
3682 #endif
3683 }
3684 if (strat->fromQ!=NULL)
3685 {
3686 for(ii=pos+1;ii<=strat->sl;ii++) strat->fromQ[ii]=0;
3687 }
3688 strat->sl=pos;
3689 }
3690 }
3691 else
3692 {
3693 // clean P
3694 }
3695 kDeleteLcm(&strat->P);
3696 }
3697
3698#ifdef KDEBUG
3699 if (TEST_OPT_DEBUG)
3700 {
3701 messageSets(strat);
3702 }
3703 strat->P.Clear();
3704#endif
3705 //kTest_TS(strat);: i_r out of sync in kInterRedBba, but not used!
3706 }
3707#ifdef KDEBUG
3708 //if (TEST_OPT_DEBUG) messageSets(strat);
3709#endif
3710 /* complete reduction of the standard basis--------- */
3711
3712 if((need_retry<=0) && (TEST_OPT_REDSB))
3713 {
3714 completeReduce(strat);
3715 if (strat->completeReduce_retry)
3716 {
3717 // completeReduce needed larger exponents, retry
3718 // hopefully: kStratChangeTailRing already provided a larger tailRing
3719 // (otherwise: it will fail again)
3721 completeReduce(strat);
3722 if (strat->completeReduce_retry)
3723 {
3724#ifdef HAVE_TAIL_RING
3725 if(currRing->bitmask>strat->tailRing->bitmask)
3726 {
3727 // retry without T
3729 cleanT(strat);strat->tailRing=currRing;
3730 int i;
3731 for(i=strat->sl;i>=0;i--) strat->S_2_R[i]=-1;
3732 completeReduce(strat);
3733 }
3734 if (strat->completeReduce_retry)
3735#endif
3736 Werror("exponent bound is %ld",currRing->bitmask);
3737 }
3738 }
3739 }
3740 else if (TEST_OPT_PROT) PrintLn();
3741
3742
3743 /* release temp data-------------------------------- */
3744 exitBuchMora(strat);
3745// if (TEST_OPT_WEIGHTM)
3746// {
3747// pRestoreDegProcs(currRing,strat->pOrigFDeg, strat->pOrigLDeg);
3748// if (ecartWeights)
3749// {
3750// omFreeSize((ADDRESS)ecartWeights,((currRing->N)+1)*sizeof(short));
3751// ecartWeights=NULL;
3752// }
3753// }
3754 //if (TEST_OPT_PROT) messageStat(0/*hilbcount*/,strat);
3755 if (Q!=NULL) updateResult(strat->Shdl,Q,strat);
3756 ideal res=strat->Shdl;
3757 strat->Shdl=NULL;
3758 delete strat;
3759 return res;
3760}
3761ideal kInterRed (ideal F, ideal Q)
3762{
3763#ifdef HAVE_PLURAL
3764 if(rIsPluralRing(currRing)) return kInterRedOld(F,Q);
3765#endif
3768 )
3769 return kInterRedOld(F,Q);
3770
3771 //return kInterRedOld(F,Q);
3772
3773 BITSET save1;
3774 SI_SAVE_OPT1(save1);
3775 //si_opt_1|=Sy_bit(OPT_NOT_SUGAR);
3777 //si_opt_1&= ~Sy_bit(OPT_REDTAIL);
3778 //si_opt_1&= ~Sy_bit(OPT_REDSB);
3779 //extern char * showOption() ;
3780 //Print("%s\n",showOption());
3781
3782 int need_retry;
3783 int counter=3;
3784 ideal res, res1;
3785 int elems;
3786 ideal null=NULL;
3787 if ((Q==NULL) || (!TEST_OPT_REDSB))
3788 {
3789 elems=idElem(F);
3790 res=kInterRedBba(F,Q,need_retry);
3791 }
3792 else
3793 {
3794 ideal FF=idSimpleAdd(F,Q);
3795 res=kInterRedBba(FF,NULL,need_retry);
3796 idDelete(&FF);
3797 null=idInit(1,1);
3798 if (need_retry)
3799 res1=kNF(null,Q,res,0,KSTD_NF_LAZY);
3800 else
3801 res1=kNF(null,Q,res);
3802 idDelete(&res);
3803 res=res1;
3804 need_retry=1;
3805 }
3806 if (idElem(res)<=1) need_retry=0;
3807 while (need_retry && (counter>0))
3808 {
3809 #ifdef KDEBUG
3810 if (TEST_OPT_DEBUG) { Print("retry counter %d\n",counter); }
3811 #endif
3812 res1=kInterRedBba(res,Q,need_retry);
3813 int new_elems=idElem(res1);
3814 counter -= (new_elems >= elems);
3815 elems = new_elems;
3816 idDelete(&res);
3817 if (idElem(res1)<=1) need_retry=0;
3818 if ((Q!=NULL) && (TEST_OPT_REDSB))
3819 {
3820 if (need_retry)
3821 res=kNF(null,Q,res1,0,KSTD_NF_LAZY);
3822 else
3823 res=kNF(null,Q,res1);
3824 idDelete(&res1);
3825 }
3826 else
3827 res = res1;
3828 if (idElem(res)<=1) need_retry=0;
3829 }
3830 if (null!=NULL) idDelete(&null);
3831 SI_RESTORE_OPT1(save1);
3833 return res;
3834}
3835
3836// returns TRUE if mora should use buckets, false otherwise
3838{
3839#ifdef MORA_USE_BUCKETS
3841 return FALSE;
3842 if (strat->red == redFirst)
3843 {
3844#ifdef NO_LDEG
3845 if (strat->syzComp==0)
3846 return TRUE;
3847#else
3848 if ((strat->homog || strat->honey) && (strat->syzComp==0))
3849 return TRUE;
3850#endif
3851 }
3852 else
3853 {
3854 #ifdef HAVE_RINGS
3855 assume(strat->red == redEcart || strat->red == redRiloc || strat->red == redRiloc_Z);
3856 #else
3857 assume(strat->red == redEcart);
3858 #endif
3859 if (strat->honey && (strat->syzComp==0))
3860 return TRUE;
3861 }
3862#endif
3863 return FALSE;
3864}
static int si_max(const int a, const int b)
Definition: auxiliary.h:124
#define UNLIKELY(X)
Definition: auxiliary.h:404
int BOOLEAN
Definition: auxiliary.h:87
#define TRUE
Definition: auxiliary.h:100
#define FALSE
Definition: auxiliary.h:96
void * ADDRESS
Definition: auxiliary.h:119
CanonicalForm FACTORY_PUBLIC pp(const CanonicalForm &)
CanonicalForm pp ( const CanonicalForm & f )
Definition: cf_gcd.cc:676
int i
Definition: cfEzgcd.cc:132
int k
Definition: cfEzgcd.cc:99
int p
Definition: cfModGcd.cc:4078
CanonicalForm b
Definition: cfModGcd.cc:4103
static CanonicalForm bound(const CFMatrix &M)
Definition: cf_linsys.cc:460
Definition: intvec.h:23
KINLINE poly kNoetherTail()
Definition: kInline.h:66
intvec * kModW
Definition: kutil.h:335
bool sigdrop
Definition: kutil.h:359
int * S_2_R
Definition: kutil.h:342
ring tailRing
Definition: kutil.h:343
void(* chainCrit)(poly p, int ecart, kStrategy strat)
Definition: kutil.h:291
char noTailReduction
Definition: kutil.h:378
int currIdx
Definition: kutil.h:317
char posInLOldFlag
Definition: kutil.h:382
pFDegProc pOrigFDeg_TailRing
Definition: kutil.h:298
int Ll
Definition: kutil.h:351
TSet T
Definition: kutil.h:326
BOOLEAN(* rewCrit1)(poly sig, unsigned long not_sevSig, poly lm, kStrategy strat, int start)
Definition: kutil.h:293
omBin lmBin
Definition: kutil.h:344
intset ecartS
Definition: kutil.h:309
char honey
Definition: kutil.h:377
unsigned syzComp
Definition: kutil.h:354
char rightGB
Definition: kutil.h:369
polyset S
Definition: kutil.h:306
int minim
Definition: kutil.h:357
poly kNoether
Definition: kutil.h:329
BOOLEAN * NotUsedAxis
Definition: kutil.h:332
LSet B
Definition: kutil.h:328
int ak
Definition: kutil.h:353
TObject ** R
Definition: kutil.h:340
BOOLEAN(* rewCrit3)(poly sig, unsigned long not_sevSig, poly lm, kStrategy strat, int start)
Definition: kutil.h:295
int lastAxis
Definition: kutil.h:355
ideal M
Definition: kutil.h:305
int tl
Definition: kutil.h:350
int(* red2)(LObject *L, kStrategy strat)
Definition: kutil.h:279
unsigned long * sevT
Definition: kutil.h:325
intvec * kHomW
Definition: kutil.h:336
poly tail
Definition: kutil.h:334
int(* posInL)(const LSet set, const int length, LObject *L, const kStrategy strat)
Definition: kutil.h:284
int blockred
Definition: kutil.h:364
ideal Shdl
Definition: kutil.h:303
unsigned sbaOrder
Definition: kutil.h:316
pFDegProc pOrigFDeg
Definition: kutil.h:296
int blockredmax
Definition: kutil.h:365
int tmax
Definition: kutil.h:350
int(* posInLOld)(const LSet Ls, const int Ll, LObject *Lo, const kStrategy strat)
Definition: kutil.h:288
char LDegLast
Definition: kutil.h:385
void(* initEcartPair)(LObject *h, poly f, poly g, int ecartF, int ecartG)
Definition: kutil.h:287
char kAllAxis
Definition: kutil.h:376
intset fromQ
Definition: kutil.h:321
void(* enterS)(LObject &h, int pos, kStrategy strat, int atR)
Definition: kutil.h:286
char use_buckets
Definition: kutil.h:383
char interpt
Definition: kutil.h:371
int newIdeal
Definition: kutil.h:356
char fromT
Definition: kutil.h:379
char completeReduce_retry
Definition: kutil.h:403
void(* initEcart)(TObject *L)
Definition: kutil.h:280
LObject P
Definition: kutil.h:302
char noClearS
Definition: kutil.h:402
int Lmax
Definition: kutil.h:351
char z2homog
Definition: kutil.h:374
int LazyPass
Definition: kutil.h:353
char no_prod_crit
Definition: kutil.h:394
char overflow
Definition: kutil.h:404
void(* enterOnePair)(int i, poly p, int ecart, int isFromQ, kStrategy strat, int atR)
Definition: kutil.h:290
LSet L
Definition: kutil.h:327
char length_pLength
Definition: kutil.h:387
int(* posInT)(const TSet T, const int tl, LObject &h)
Definition: kutil.h:281
int(* red)(LObject *L, kStrategy strat)
Definition: kutil.h:278
BOOLEAN(* rewCrit2)(poly sig, unsigned long not_sevSig, poly lm, kStrategy strat, int start)
Definition: kutil.h:294
int sl
Definition: kutil.h:348
int sbaEnterS
Definition: kutil.h:362
int LazyDegree
Definition: kutil.h:353
char posInLDependsOnLength
Definition: kutil.h:389
unsigned long * sevS
Definition: kutil.h:322
char homog
Definition: kutil.h:372
pLDegProc pOrigLDeg
Definition: kutil.h:297
char update
Definition: kutil.h:381
s_poly_proc_t s_poly
Definition: kutil.h:300
pLDegProc pOrigLDeg_TailRing
Definition: kutil.h:299
static FORCE_INLINE BOOLEAN nCoeff_is_Z(const coeffs r)
Definition: coeffs.h:813
static FORCE_INLINE BOOLEAN n_IsUnit(number n, const coeffs r)
TRUE iff n has a multiplicative inverse in the given coeff field/ring r.
Definition: coeffs.h:512
static FORCE_INLINE number n_QuotRem(number a, number b, number *q, const coeffs r)
Definition: coeffs.h:678
static FORCE_INLINE BOOLEAN n_IsZero(number n, const coeffs r)
TRUE iff 'n' represents the zero element.
Definition: coeffs.h:461
static FORCE_INLINE BOOLEAN n_DivBy(number a, number b, const coeffs r)
test whether 'a' is divisible 'b'; for r encoding a field: TRUE iff 'b' does not represent zero in Z:...
Definition: coeffs.h:750
#define Print
Definition: emacs.cc:80
#define WarnS
Definition: emacs.cc:78
CanonicalForm res
Definition: facAbsFact.cc:60
const CanonicalForm & w
Definition: facAbsFact.cc:51
CanonicalForm H
Definition: facAbsFact.cc:60
int j
Definition: facHensel.cc:110
void WerrorS(const char *s)
Definition: feFopen.cc:24
if(!FE_OPT_NO_SHELL_FLAG)(void) system(sys)
#define VAR
Definition: globaldefs.h:5
long scMult0Int(ideal S, ideal Q)
Definition: hdegree.cc:950
STATIC_VAR poly last
Definition: hdegree.cc:1173
#define idDelete(H)
delete an ideal
Definition: ideals.h:29
#define idSimpleAdd(A, B)
Definition: ideals.h:42
BOOLEAN idInsertPoly(ideal h1, poly h2)
insert h2 into h1 (if h2 is not the zero polynomial) return TRUE iff h2 was indeed inserted
BOOLEAN idIs0(ideal h)
returns true if h is the zero ideal
static BOOLEAN idHomModule(ideal m, ideal Q, intvec **w)
Definition: ideals.h:96
#define idTest(id)
Definition: ideals.h:47
static BOOLEAN idHomIdeal(ideal id, ideal Q=NULL)
Definition: ideals.h:91
ideal idCopy(ideal A)
Definition: ideals.h:60
static BOOLEAN length(leftv result, leftv arg)
Definition: interval.cc:257
STATIC_VAR Poly * h
Definition: janet.cc:971
KINLINE TSet initT()
Definition: kInline.h:84
KINLINE poly redtailBba(poly p, int pos, kStrategy strat, BOOLEAN normalize)
Definition: kInline.h:1214
KINLINE TObject ** initR()
Definition: kInline.h:95
KINLINE BOOLEAN arriRewDummy(poly, unsigned long, poly, kStrategy, int)
Definition: kInline.h:1264
KINLINE unsigned long * initsevT()
Definition: kInline.h:100
int redLiftstd(LObject *h, kStrategy strat)
Definition: kLiftstd.cc:167
static ideal nc_GB(const ideal F, const ideal Q, const intvec *w, const intvec *hilb, kStrategy strat, const ring r)
Definition: nc.h:27
void khCheckLocInhom(ideal Q, intvec *w, intvec *hilb, int &count, kStrategy strat)
Definition: khstd.cc:133
void khCheck(ideal Q, intvec *w, intvec *hilb, int &eledeg, int &count, kStrategy strat)
Definition: khstd.cc:28
int ksReducePolyLC(LObject *PR, TObject *PW, poly spNoether, number *coef, kStrategy strat)
Definition: kspoly.cc:481
void ksCreateSpoly(LObject *Pair, poly spNoether, int use_buckets, ring tailRing, poly m1, poly m2, TObject **R)
Definition: kspoly.cc:1208
int ksReducePoly(LObject *PR, TObject *PW, poly spNoether, number *coef, poly *mon, kStrategy strat, BOOLEAN reduce)
Definition: kspoly.cc:189
ideal kInterRedOld(ideal F, ideal Q)
Definition: kstd1.cc:3409
void reorderT(kStrategy strat)
Definition: kstd1.cc:1246
poly kNFBound(ideal F, ideal Q, poly p, int bound, int syzComp, int lazyReduce)
Definition: kstd1.cc:3238
ideal mora(ideal F, ideal Q, intvec *w, intvec *hilb, kStrategy strat)
Definition: kstd1.cc:1886
void initMora(ideal F, kStrategy strat)
Definition: kstd1.cc:1817
int redFirst(LObject *h, kStrategy strat)
Definition: kstd1.cc:797
void firstUpdate(kStrategy strat)
Definition: kstd1.cc:1561
poly k_NF(ideal F, ideal Q, poly p, int syzComp, int lazyReduce, const ring _currRing)
NOTE: this is just a wrapper which sets currRing for the actual kNF call.
Definition: kstd1.cc:3396
int redEcart(LObject *h, kStrategy strat)
Definition: kstd1.cc:169
void enterSMoraNF(LObject &p, int atS, kStrategy strat, int atR=-1)
Definition: kstd1.cc:1681
long kModDeg(poly p, ring r)
Definition: kstd1.cc:2424
static int doRed(LObject *h, TObject *with, BOOLEAN intoT, kStrategy strat, bool redMoraNF)
Definition: kstd1.cc:119
ideal kMin_std(ideal F, ideal Q, tHomog h, intvec **w, ideal &M, intvec *hilb, int syzComp, int reduced)
Definition: kstd1.cc:3034
void updateLHC(kStrategy strat)
Definition: kstd1.cc:1469
ideal kStdShift(ideal F, ideal Q, tHomog h, intvec **w, intvec *hilb, int syzComp, int newIdeal, intvec *vw, BOOLEAN rightGB)
Definition: kstd1.cc:2926
ideal kInterRed(ideal F, ideal Q)
Definition: kstd1.cc:3761
void missingAxis(int *last, kStrategy strat)
Definition: kstd1.cc:1284
void reorderL(kStrategy strat)
Definition: kstd1.cc:1226
int posInL10(const LSet set, const int length, LObject *p, const kStrategy strat)
Definition: kstd1.cc:1365
ideal kInterRedBba(ideal F, ideal Q, int &need_retry)
Definition: kstd1.cc:3501
static BOOLEAN kMoraUseBucket(kStrategy strat)
Definition: kstd1.cc:3837
poly kNF1(ideal F, ideal Q, poly q, kStrategy strat, int lazyReduce)
Definition: kstd1.cc:2124
static void kOptimizeLDeg(pLDegProc ldeg, kStrategy strat)
Definition: kstd1.cc:100
void initBba(kStrategy strat)
Definition: kstd1.cc:1689
int redRiloc(LObject *h, kStrategy strat)
Definition: kstd1.cc:387
void initSba(ideal F, kStrategy strat)
Definition: kstd1.cc:1747
long kHomModDeg(poly p, ring r)
Definition: kstd1.cc:2434
static poly redMoraNFRing(poly h, kStrategy strat, int flag)
Definition: kstd1.cc:1083
void kDebugPrint(kStrategy strat)
Definition: kutil.cc:11560
void enterSMora(LObject &p, int atS, kStrategy strat, int atR=-1)
Definition: kstd1.cc:1628
VAR intvec * kHomW
Definition: kstd1.cc:2422
VAR intvec * kModW
Definition: kstd1.cc:2422
void updateL(kStrategy strat)
Definition: kstd1.cc:1398
VAR BITSET validOpts
Definition: kstd1.cc:60
void updateT(kStrategy strat)
Definition: kstd1.cc:1535
BOOLEAN hasPurePower(const poly p, int last, int *length, kStrategy strat)
Definition: kstd1.cc:1317
poly kNF(ideal F, ideal Q, poly p, int syzComp, int lazyReduce)
Definition: kstd1.cc:3182
static poly redMoraNF(poly h, kStrategy strat, int flag)
Definition: kstd1.cc:978
VAR BITSET kOptions
Definition: kstd1.cc:45
int redRiloc_Z(LObject *h, kStrategy strat)
Definition: kstd1.cc:568
ideal kSba(ideal F, ideal Q, tHomog h, intvec **w, int sbaOrder, int arri, intvec *hilb, int syzComp, int newIdeal, intvec *vw)
Definition: kstd1.cc:2632
ideal kStd(ideal F, ideal Q, tHomog h, intvec **w, intvec *hilb, int syzComp, int newIdeal, intvec *vw, s_poly_proc_t sp)
Definition: kstd1.cc:2447
#define KSTD_NF_LAZY
Definition: kstd1.h:17
EXTERN_VAR int Kstd1_deg
Definition: kstd1.h:49
#define KSTD_NF_NONORM
Definition: kstd1.h:21
BOOLEAN(* s_poly_proc_t)(kStrategy strat)
Definition: kstd1.h:14
#define KSTD_NF_ECART
Definition: kstd1.h:19
EXTERN_VAR int Kstd1_mu
Definition: kstd1.h:49
int redRing_Z(LObject *h, kStrategy strat)
Definition: kstd2.cc:683
int kFindDivisibleByInS(const kStrategy strat, int *max_ind, LObject *L)
return -1 if no divisor is found number of first divisor in S, otherwise
Definition: kstd2.cc:421
int kTestDivisibleByT0_Z(const kStrategy strat, const LObject *L)
tests if T[0] divides the leading monomial of L, returns -1 if not
Definition: kstd2.cc:146
poly kNF2(ideal F, ideal Q, poly q, kStrategy strat, int lazyReduce)
Definition: kstd2.cc:3967
int redHoney(LObject *h, kStrategy strat)
Definition: kstd2.cc:2088
int redHomog(LObject *h, kStrategy strat)
Definition: kstd2.cc:1121
ideal sba(ideal F0, ideal Q, intvec *w, intvec *hilb, kStrategy strat)
Definition: kstd2.cc:3001
ideal bba(ideal F, ideal Q, intvec *w, intvec *hilb, kStrategy strat)
Definition: kstd2.cc:2642
int redLazy(LObject *h, kStrategy strat)
Definition: kstd2.cc:1881
int redSigRing(LObject *h, kStrategy strat)
Definition: kstd2.cc:1511
int redSig(LObject *h, kStrategy strat)
Definition: kstd2.cc:1343
poly kNF2Bound(ideal F, ideal Q, poly q, int bound, kStrategy strat, int lazyReduce)
Definition: kstd2.cc:4049
int redRing(LObject *h, kStrategy strat)
Definition: kstd2.cc:954
int kFindDivisibleByInT(const kStrategy strat, const LObject *L, const int start)
return -1 if no divisor is found number of first divisor in T, otherwise
Definition: kstd2.cc:321
ideal bbaShift(ideal F, ideal Q, intvec *w, intvec *hilb, kStrategy strat)
Definition: kstd2.cc:4608
void message(int i, int *reduc, int *olddeg, kStrategy strat, int red_result)
Definition: kutil.cc:7512
poly redtail(LObject *L, int end_pos, kStrategy strat)
Definition: kutil.cc:6883
int posInT17(const TSet set, const int length, LObject &p)
Definition: kutil.cc:5306
void initBuchMora(ideal F, ideal Q, kStrategy strat)
Definition: kutil.cc:9800
VAR int HCord
Definition: kutil.cc:246
BOOLEAN arriRewCriterionPre(poly sig, unsigned long not_sevSig, poly lm, kStrategy strat, int)
Definition: kutil.cc:6689
void enterT(LObject &p, kStrategy strat, int atT)
Definition: kutil.cc:9178
BOOLEAN arriRewCriterion(poly, unsigned long, poly, kStrategy strat, int start=0)
Definition: kutil.cc:6664
void enterSSba(LObject &p, int atS, kStrategy strat, int atR)
Definition: kutil.cc:8952
BOOLEAN kTest(kStrategy strat)
Definition: kutil.cc:1012
BOOLEAN kTest_TS(kStrategy strat)
Definition: kutil.cc:1073
void enterOnePairNormal(int i, poly p, int ecart, int isFromQ, kStrategy strat, int atR=-1)
Definition: kutil.cc:1952
void enterL(LSet *set, int *length, int *LSetmax, LObject p, int at)
Definition: kutil.cc:1280
BOOLEAN faugereRewCriterion(poly sig, unsigned long not_sevSig, poly, kStrategy strat, int start=0)
Definition: kutil.cc:6605
int posInT2(const TSet set, const int length, LObject &p)
Definition: kutil.cc:4947
void enterpairs(poly h, int k, int ecart, int pos, kStrategy strat, int atR)
Definition: kutil.cc:4509
void initHilbCrit(ideal, ideal, intvec **hilb, kStrategy strat)
Definition: kutil.cc:9458
void initEcartPairMora(LObject *Lp, poly, poly, int ecartF, int ecartG)
Definition: kutil.cc:1326
void initBuchMoraPos(kStrategy strat)
Definition: kutil.cc:9627
void initS(ideal F, ideal Q, kStrategy strat)
Definition: kutil.cc:7635
BOOLEAN kStratChangeTailRing(kStrategy strat, LObject *L, TObject *T, unsigned long expbound)
Definition: kutil.cc:11021
int posInL0(const LSet set, const int length, LObject *p, const kStrategy)
Definition: kutil.cc:5643
void chainCritOpt_1(poly, int, kStrategy strat)
Definition: kutil.cc:3458
void enterT_strong(LObject &p, kStrategy strat, int atT)
Definition: kutil.cc:9278
void postReduceByMon(LObject *h, kStrategy strat)
used for GB over ZZ: intermediate reduction by monomial elements background: any known constant eleme...
Definition: kutil.cc:10763
void HEckeTest(poly pp, kStrategy strat)
Definition: kutil.cc:501
BOOLEAN kTest_L(LObject *L, kStrategy strat, BOOLEAN testp, int lpos, TSet T, int tlength)
Definition: kutil.cc:926
void exitBuchMora(kStrategy strat)
Definition: kutil.cc:9885
void initEcartNormal(TObject *h)
Definition: kutil.cc:1304
int posInS(const kStrategy strat, const int length, const poly p, const int ecart_p)
Definition: kutil.cc:4685
void updateS(BOOLEAN toT, kStrategy strat)
Definition: kutil.cc:8594
BOOLEAN kCheckSpolyCreation(LObject *L, kStrategy strat, poly &m1, poly &m2)
Definition: kutil.cc:10534
void cleanT(kStrategy strat)
Definition: kutil.cc:565
BOOLEAN kTest_T(TObject *T, kStrategy strat, int i, char TN)
Definition: kutil.cc:801
void deleteHC(LObject *L, kStrategy strat, BOOLEAN fromNext)
Definition: kutil.cc:294
void updateResult(ideal r, ideal Q, kStrategy strat)
Definition: kutil.cc:10128
void superenterpairs(poly h, int k, int ecart, int pos, kStrategy strat, int atR)
Definition: kutil.cc:4478
void deleteInL(LSet set, int *length, int j, kStrategy strat)
Definition: kutil.cc:1215
void kStratInitChangeTailRing(kStrategy strat)
Definition: kutil.cc:11114
void initBuchMoraCrit(kStrategy strat)
Definition: kutil.cc:9476
void completeReduce(kStrategy strat, BOOLEAN withT)
Definition: kutil.cc:10340
void initBuchMoraPosRing(kStrategy strat)
Definition: kutil.cc:9713
void messageSets(kStrategy strat)
Definition: kutil.cc:7585
poly preIntegerCheck(const ideal Forig, const ideal Q)
used for GB over ZZ: look for constant and monomial elements in the ideal background: any known const...
Definition: kutil.cc:10596
void chainCritNormal(poly p, int ecart, kStrategy strat)
Definition: kutil.cc:3217
void initEcartBBA(TObject *h)
Definition: kutil.cc:1312
void initEcartPairBba(LObject *Lp, poly, poly, int, int)
Definition: kutil.cc:1319
void messageStat(int hilbcount, kStrategy strat)
Definition: kutil.cc:7553
void finalReduceByMon(kStrategy strat)
used for GB over ZZ: final reduction by constant elements background: any known constant element of i...
Definition: kutil.cc:10928
void enterSBba(LObject &p, int atS, kStrategy strat, int atR)
Definition: kutil.cc:8829
BOOLEAN newHEdge(kStrategy strat)
Definition: kutil.cc:10462
void cancelunit(LObject *L, BOOLEAN inNF)
Definition: kutil.cc:373
#define setmaxTinc
Definition: kutil.h:34
LObject * LSet
Definition: kutil.h:60
static void kDeleteLcm(LObject *P)
Definition: kutil.h:880
#define setmaxT
Definition: kutil.h:33
#define RED_CANONICALIZE
Definition: kutil.h:36
class sTObject TObject
Definition: kutil.h:57
class sLObject LObject
Definition: kutil.h:58
static bool rIsSCA(const ring r)
Definition: nc.h:190
ideal id_KillSquares(const ideal id, const short iFirstAltVar, const short iLastAltVar, const ring r, const bool bSkipZeroes)
Definition: sca.cc:1520
poly p_KillSquares(const poly p, const short iFirstAltVar, const short iLastAltVar, const ring r)
Definition: sca.cc:1465
void mult(unsigned long *result, unsigned long *a, unsigned long *b, unsigned long p, int dega, int degb)
Definition: minpoly.cc:647
#define assume(x)
Definition: mod2.h:389
#define p_GetComp(p, r)
Definition: monomials.h:64
#define pIter(p)
Definition: monomials.h:37
#define pNext(p)
Definition: monomials.h:36
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
Definition: monomials.h:44
#define __p_GetComp(p, r)
Definition: monomials.h:63
number ndQuotRem(number a, number b, number *r, const coeffs R)
Definition: numbers.cc:357
#define nEqual(n1, n2)
Definition: numbers.h:20
#define omfree(addr)
Definition: omAllocDecl.h:237
#define omFreeSize(addr, size)
Definition: omAllocDecl.h:260
omError_t omTestMemory(int check_level)
Definition: omDebug.c:94
#define omAlloc(size)
Definition: omAllocDecl.h:210
#define omFree(addr)
Definition: omAllocDecl.h:261
#define NULL
Definition: omList.c:12
VAR BOOLEAN siCntrlc
Definition: options.c:14
VAR unsigned si_opt_1
Definition: options.c:5
#define TEST_OPT_WEIGHTM
Definition: options.h:122
#define OPT_SUGARCRIT
Definition: options.h:81
#define OPT_PROT
Definition: options.h:76
#define OPT_INFREDTAIL
Definition: options.h:95
#define OPT_INTSTRATEGY
Definition: options.h:93
#define TEST_OPT_IDLIFT
Definition: options.h:130
#define TEST_OPT_INTSTRATEGY
Definition: options.h:111
#define BVERBOSE(a)
Definition: options.h:35
#define OPT_WEIGHTM
Definition: options.h:98
#define TEST_OPT_FINDET
Definition: options.h:112
#define OPT_REDTAIL
Definition: options.h:92
#define SI_SAVE_OPT1(A)
Definition: options.h:21
#define SI_RESTORE_OPT1(A)
Definition: options.h:24
#define OPT_NOT_SUGAR
Definition: options.h:79
#define TEST_OPT_OLDSTD
Definition: options.h:124
#define OPT_REDTHROUGH
Definition: options.h:83
#define OPT_REDSB
Definition: options.h:77
#define Sy_bit(x)
Definition: options.h:31
#define TEST_OPT_REDSB
Definition: options.h:105
#define OPT_NOTREGULARITY
Definition: options.h:97
#define TEST_OPT_DEGBOUND
Definition: options.h:114
#define TEST_OPT_SB_1
Definition: options.h:120
#define TEST_OPT_RETURN_SB
Definition: options.h:113
#define TEST_OPT_MULTBOUND
Definition: options.h:115
#define TEST_OPT_PROT
Definition: options.h:104
#define TEST_OPT_REDTHROUGH
Definition: options.h:123
#define OPT_INTERRUPT
Definition: options.h:80
#define OPT_DEGBOUND
Definition: options.h:91
#define TEST_V_DEG_STOP
Definition: options.h:139
#define TEST_OPT_FASTHC
Definition: options.h:110
#define TEST_OPT_DEBUG
Definition: options.h:109
#define OPT_FASTHC
Definition: options.h:86
#define TEST_OPT_REDTAIL_SYZ
Definition: options.h:118
#define OPT_OLDSTD
Definition: options.h:87
#define TEST_OPT_STAIRCASEBOUND
Definition: options.h:116
#define TEST_OPT_NOT_BUCKETS
Definition: options.h:106
pShallowCopyDeleteProc pGetShallowCopyDeleteProc(ring, ring)
int p_IsPurePower(const poly p, const ring r)
return i, if head depends only on var(i)
Definition: p_polys.cc:1226
void pRestoreDegProcs(ring r, pFDegProc old_FDeg, pLDegProc old_lDeg)
Definition: p_polys.cc:3649
long pLDeg0c(poly p, int *l, const ring r)
Definition: p_polys.cc:770
long pLDeg0(poly p, int *l, const ring r)
Definition: p_polys.cc:739
void pSetDegProcs(ring r, pFDegProc new_FDeg, pLDegProc new_lDeg)
Definition: p_polys.cc:3637
long p_WDegree(poly p, const ring r)
Definition: p_polys.cc:714
static int pLength(poly a)
Definition: p_polys.h:188
static void p_LmDelete(poly p, const ring r)
Definition: p_polys.h:721
static long p_FDeg(const poly p, const ring r)
Definition: p_polys.h:378
static long p_MinComp(poly p, ring lmRing, ring tailRing)
Definition: p_polys.h:311
#define pp_Test(p, lmRing, tailRing)
Definition: p_polys.h:161
static BOOLEAN p_LmShortDivisibleBy(poly a, unsigned long sev_a, poly b, unsigned long not_sev_b, const ring r)
Definition: p_polys.h:1908
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent @Note: the integer VarOffset encodes:
Definition: p_polys.h:467
static void p_Delete(poly *p, const ring r)
Definition: p_polys.h:899
void p_wrp(poly p, ring lmRing, ring tailRing)
Definition: polys0.cc:373
void rChangeCurrRing(ring r)
Definition: polys.cc:15
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
Definition: polys.cc:13
Compatibility layer for legacy polynomial operations (over currRing)
#define pAdd(p, q)
Definition: polys.h:203
#define pTest(p)
Definition: polys.h:414
#define pDelete(p_ptr)
Definition: polys.h:186
#define pHead(p)
returns newly allocated copy of Lm(p), coef is copied, next=NULL, p might be NULL
Definition: polys.h:67
#define pSetm(p)
Definition: polys.h:271
#define pIsConstant(p)
like above, except that Comp must be 0
Definition: polys.h:238
#define pGetComp(p)
Component.
Definition: polys.h:37
void pNorm(poly p)
Definition: polys.h:362
#define pLmShortDivisibleBy(a, sev_a, b, not_sev_b)
Divisibility tests based on Short Exponent vectors sev_a == pGetShortExpVector(a) not_sev_b == ~ pGet...
Definition: polys.h:146
#define pMaxComp(p)
Definition: polys.h:299
#define pSetComp(p, v)
Definition: polys.h:38
#define pLmDelete(p)
assume p != NULL, deletes Lm(p)->coef and Lm(p)
Definition: polys.h:76
#define pGetShortExpVector(a)
returns the "Short Exponent Vector" – used to speed up divisibility tests (see polys-impl....
Definition: polys.h:152
void wrp(poly p)
Definition: polys.h:310
static void pLmFree(poly p)
frees the space of the monomial m, assumes m != NULL coef is not freed, m is not advanced
Definition: polys.h:70
#define pSetmComp(p)
TODO:
Definition: polys.h:273
#define pNormalize(p)
Definition: polys.h:317
#define pSetExp(p, i, v)
Definition: polys.h:42
#define pLmCmp(p, q)
returns 0|1|-1 if p=q|p>q|p<q w.r.t monomial ordering
Definition: polys.h:105
#define pCopy(p)
return a copy of the poly
Definition: polys.h:185
#define pOne()
Definition: polys.h:315
#define pWTotaldegree(p)
Definition: polys.h:283
void PrintS(const char *s)
Definition: reporter.cc:284
void PrintLn()
Definition: reporter.cc:310
void Werror(const char *fmt,...)
Definition: reporter.cc:189
#define mflush()
Definition: reporter.h:58
static BOOLEAN rField_is_Z(const ring r)
Definition: ring.h:509
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
Definition: ring.h:400
long(* pLDegProc)(poly p, int *length, ring r)
Definition: ring.h:37
static BOOLEAN rIsLPRing(const ring r)
Definition: ring.h:411
static BOOLEAN rField_is_numeric(const ring r)
Definition: ring.h:515
BOOLEAN rHasMixedOrdering(const ring r)
Definition: ring.h:761
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:592
BOOLEAN rHasGlobalOrdering(const ring r)
Definition: ring.h:759
BOOLEAN rHasLocalOrMixedOrdering(const ring r)
Definition: ring.h:760
static BOOLEAN rField_has_simple_inverse(const ring r)
Definition: ring.h:548
#define rField_is_Ring(R)
Definition: ring.h:485
ideal SCAQuotient(const ring r)
Definition: sca.h:10
static short scaLastAltVar(ring r)
Definition: sca.h:25
static short scaFirstAltVar(ring r)
Definition: sca.h:18
#define idIsInV(I)
Definition: shiftop.h:49
ideal idInit(int idsize, int rank)
initialise an ideal / module
Definition: simpleideals.cc:35
void id_Delete(ideal *h, ring r)
deletes an ideal/module/matrix
long id_RankFreeModule(ideal s, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s
void idSkipZeroes(ideal ide)
gives an ideal/module the minimal possible size
#define IDELEMS(i)
Definition: simpleideals.h:23
static int idElem(const ideal F)
number of non-zero polys in F
Definition: simpleideals.h:67
#define M
Definition: sirandom.c:25
#define Q
Definition: sirandom.c:26
tHomog
Definition: structs.h:35
@ isHomog
Definition: structs.h:37
@ testHomog
Definition: structs.h:38
@ isNotHomog
Definition: structs.h:36
#define BITSET
Definition: structs.h:16
#define loop
Definition: structs.h:75
long totaldegreeWecart(poly p, ring r)
Definition: weight.cc:217
long maxdegreeWecart(poly p, int *l, ring r)
Definition: weight.cc:247
void kEcartWeights(poly *s, int sl, short *eweight, const ring R)
Definition: weight.cc:182
EXTERN_VAR short * ecartWeights
Definition: weight.h:12