|
| #define | pSetCoeff(p, n) p_SetCoeff(p,n,currRing) |
| | deletes old coeff before setting the new one More...
|
| |
| #define | pGetOrder(p) p_GetOrder(p, currRing) |
| | Order. More...
|
| |
| #define | pGetComp(p) (int)__p_GetComp(p, currRing) |
| | Component. More...
|
| |
| #define | pSetComp(p, v) p_SetComp(p,v, currRing) |
| |
| #define | pGetExp(p, i) p_GetExp(p, i, currRing) |
| | Exponent. More...
|
| |
| #define | pSetExp(p, i, v) p_SetExp(p, i, v, currRing) |
| |
| #define | pIncrExp(p, i) p_IncrExp(p,i, currRing) |
| |
| #define | pDecrExp(p, i) p_DecrExp(p,i, currRing) |
| |
| #define | pAddExp(p, i, v) p_AddExp(p,i,v, currRing) |
| |
| #define | pSubExp(p, i, v) p_SubExp(p,i,v, currRing) |
| |
| #define | pMultExp(p, i, v) p_MultExp(p,i,v, currRing) |
| |
| #define | pGetExpSum(p1, p2, i) p_GetExpSum(p1, p2, i, currRing) |
| |
| #define | pGetExpDiff(p1, p2, i) p_GetExpDiff(p1, p2, i, currRing) |
| |
| #define | pNew() p_New(currRing) |
| | allocates the space for a new monomial – no initialization !!! More...
|
| |
| #define | pInit() p_Init(currRing,currRing->PolyBin) |
| | allocates a new monomial and initializes everything to 0 More...
|
| |
| #define | pLmInit(p) p_LmInit(p, currRing) |
| | like pInit, except that expvector is initialized to that of p, p must be != NULL More...
|
| |
| #define | pHead(p) p_Head(p, currRing) |
| | returns newly allocated copy of Lm(p), coef is copied, next=NULL, p might be NULL More...
|
| |
| #define | pLmFreeAndNext(p) p_LmFreeAndNext(p, currRing) |
| | assumes p != NULL, deletes p, returns pNext(p) More...
|
| |
| #define | pLmDelete(p) p_LmDelete(p, currRing) |
| | assume p != NULL, deletes Lm(p)->coef and Lm(p) More...
|
| |
| #define | pLmDeleteAndNext(p) p_LmDeleteAndNext(p, currRing) |
| | like pLmDelete, returns pNext(p) More...
|
| |
| #define | pExpVectorCopy(d_p, s_p) p_ExpVectorCopy(d_p, s_p, currRing) |
| |
| #define | pExpVectorAdd(p1, p2) p_ExpVectorAdd(p1, p2, currRing) |
| |
| #define | pExpVectorSub(p1, p2) p_ExpVectorSub(p1, p2, currRing) |
| |
| #define | pExpVectorAddSub(p1, p2, p3) p_ExpVectorAddSub(p1, p2, p3, currRing) |
| |
| #define | pExpVectorSum(pr, p1, p2) p_ExpVectorSum(pr, p1, p2, currRing) |
| |
| #define | pExpVectorDiff(pr, p1, p2) p_ExpVectorDiff(pr, p1, p2, currRing) |
| |
| #define | pGetExpV(p, e) p_GetExpV(p, e, currRing) |
| | Gets a copy of (resp. set) the exponent vector, where e is assumed to point to (r->N +1)*sizeof(long) memory. Exponents are filled in as follows: comp, e_1, .., e_n. More...
|
| |
| #define | pSetExpV(p, e) p_SetExpV(p, e, currRing) |
| |
| #define | pLmCmp(p, q) p_LmCmp(p,q,currRing) |
| | returns 0|1|-1 if p=q|p>q|p<q w.r.t monomial ordering More...
|
| |
| #define | pLmCmpAction(p, q, actionE, actionG, actionS) _p_LmCmpAction(p,q,currRing, actionE, actionG,actionS) |
| | executes axtionE|actionG|actionS if p=q|p>q|p<q w.r.t monomial ordering action should be a "goto ..." More...
|
| |
| #define | pLmEqual(p1, p2) p_ExpVectorEqual(p1, p2, currRing) |
| |
| #define | pCmp(p1, p2) p_Cmp(p1, p2, currRing) |
| | pCmp: args may be NULL returns: (p2==NULL ? 1 : (p1 == NULL ? -1 : p_LmCmp(p1, p2))) More...
|
| |
| #define | pLtCmp(p, q) p_LtCmp(p,q,currRing) |
| |
| #define | pLtCmpNoAbs(p, q) p_LtCmpNoAbs(p,q,currRing) |
| |
| #define | pLtCmpOrdSgnDiffM(p, q) p_LtCmpOrdSgnDiffM(p,q,currRing) |
| |
| #define | pLtCmpOrdSgnDiffP(p, q) p_LtCmpOrdSgnDiffP(p,q,currRing) |
| |
| #define | pLtCmpOrdSgnEqM(p, q) p_LtCmpOrdSgnEqM(p,q,currRing) |
| |
| #define | pLtCmpOrdSgnEqP(p, q) p_LtCmpOrdSgnEqP(p,q,currRing) |
| |
| #define | pDivisibleBy(a, b) p_DivisibleBy(a,b,currRing) |
| | returns TRUE, if leading monom of a divides leading monom of b i.e., if there exists a expvector c > 0, s.t. b = a + c; More...
|
| |
| #define | pLmDivisibleBy(a, b) p_LmDivisibleBy(a,b,currRing) |
| | like pDivisibleBy, except that it is assumed that a!=NULL, b!=NULL More...
|
| |
| #define | pLmDivisibleByNoComp(a, b) p_LmDivisibleByNoComp(a,b,currRing) |
| | like pLmDivisibleBy, does not check components More...
|
| |
| #define | pLmShortDivisibleBy(a, sev_a, b, not_sev_b) p_LmShortDivisibleBy(a, sev_a, b, not_sev_b, currRing) |
| | Divisibility tests based on Short Exponent vectors sev_a == pGetShortExpVector(a) not_sev_b == ~ pGetShortExpVector(b) More...
|
| |
| #define | pLmRingShortDivisibleBy(a, sev_a, b, not_sev_b) p_LmRingShortDivisibleBy(a, sev_a, b, not_sev_b, currRing) |
| |
| #define | pGetShortExpVector(a) p_GetShortExpVector(a, currRing) |
| | returns the "Short Exponent Vector" – used to speed up divisibility tests (see polys-impl.cc ) More...
|
| |
| #define | pDivisibleByRingCase(f, g) p_DivisibleByRingCase(f,g,currRing) |
| | divisibility check over ground ring (which may contain zero divisors); TRUE iff LT(f) divides LT(g), i.e., LT(f)*c*m = LT(g), for some coefficient c and some monomial m; does not take components into account */ More...
|
| |
| #define | pCopy(p) p_Copy(p, currRing) |
| | return a copy of the poly More...
|
| |
| #define | pDelete(p_ptr) p_Delete(p_ptr, currRing) |
| |
| #define | pNeg(p) p_Neg(p, currRing) |
| |
| #define | ppMult_nn(p, n) pp_Mult_nn(p, n, currRing) |
| |
| #define | pMult_nn(p, n) p_Mult_nn(p, n, currRing) |
| |
| #define | ppMult_mm(p, m) pp_Mult_mm(p, m, currRing) |
| |
| #define | pMult_mm(p, m) p_Mult_mm(p, m, currRing) |
| |
| #define | pAdd(p, q) p_Add_q(p, q, currRing) |
| |
| #define | pPower(p, q) p_Power(p, q, currRing) |
| |
| #define | pMinus_mm_Mult_qq(p, m, q) p_Minus_mm_Mult_qq(p, m, q, currRing) |
| |
| #define | pPlus_mm_Mult_qq(p, m, q) p_Plus_mm_Mult_qq(p, m, q, currRing) |
| |
| #define | pMult(p, q) p_Mult_q(p, q, currRing) |
| |
| #define | ppMult_qq(p, q) pp_Mult_qq(p, q, currRing) |
| |
| #define | ppMult_Coeff_mm_DivSelect(p, m) pp_Mult_Coeff_mm_DivSelect(p, m, currRing) |
| |
| #define | pSortMerger(p) p_SortMerge(p, currRing) |
| | sorts p, assumes all monomials in p are different More...
|
| |
| #define | pSort(p) p_SortMerge(p, currRing) |
| |
| #define | pSortAdd(p) p_SortAdd(p, currRing) |
| | sorts p, p may have equal monomials More...
|
| |
| #define | pSortCompCorrect(p) pSort(p) |
| | Assume: If considered only as poly in any component of p (say, monomials of other components of p are set to 0), then p is already sorted correctly. More...
|
| |
| #define | pIsConstantComp(p) p_IsConstantComp(p, currRing) |
| | return true if p is either NULL, or if all exponents of p are 0, Comp of p might be != 0 More...
|
| |
| #define | pIsConstant(p) p_IsConstant(p,currRing) |
| | like above, except that Comp must be 0 More...
|
| |
| #define | pIsUnit(p) p_IsUnit(p,currRing) |
| | return true if the Lm is a constant <>0 More...
|
| |
| #define | pLmIsConstantComp(p) p_LmIsConstantComp(p, currRing) |
| | like above, except that p must be != NULL More...
|
| |
| #define | pLmIsConstant(p) p_LmIsConstant(p,currRing) |
| |
| #define | pIsConstantPoly(p) p_IsConstantPoly(p, currRing) |
| | return TRUE if all monomials of p are constant More...
|
| |
| #define | pIsPurePower(p) p_IsPurePower(p, currRing) |
| |
| #define | pIsUnivariate(p) p_IsUnivariate(p, currRing) |
| |
| #define | pIsVector(p) (pGetComp(p)>0) |
| |
| #define | pGetVariables(p, e) p_GetVariables(p, e, currRing) |
| |
| #define | pHasNotCFRing(p1, p2) p_HasNotCFRing(p1,p2,currRing) |
| |
| #define | pHasNotCF(p1, p2) p_HasNotCF(p1,p2,currRing) |
| |
| #define | pSplit(p, r) p_Split(p,r) |
| |
| #define | pSetm(p) p_Setm(p, currRing) |
| |
| #define | pSetmComp(p) p_Setm(p, currRing) |
| | TODO: More...
|
| |
| #define | pWeight(i) p_Weight(i,currRing) |
| |
| #define | pWTotaldegree(p) p_WTotaldegree(p,currRing) |
| |
| #define | pWDegree(p) p_WDegree(p,currRing) |
| |
| #define | pSub(a, b) p_Sub(a,b,currRing) |
| |
| #define | pmInit(a, b) p_mInit(a,b,currRing) |
| |
| #define | pMDivide(a, b) p_MDivide(a,b,currRing) |
| |
| #define | pDivideM(a, b) p_DivideM(a,b,currRing) |
| |
| #define | pLcm(a, b, m) p_Lcm(a,b,m,currRing) |
| |
| #define | pDiff(a, b) p_Diff(a,b,currRing) |
| |
| #define | pDiffOp(a, b, m) p_DiffOp(a,b,m,currRing) |
| |
| #define | pMaxComp(p) p_MaxComp(p, currRing) |
| |
| #define | pMinComp(p) p_MinComp(p, currRing) |
| |
| #define | pOneComp(p) p_OneComp(p, currRing) |
| |
| #define | pSetCompP(a, i) p_SetCompP(a, i, currRing) |
| |
| #define | pISet(i) p_ISet(i,currRing) |
| |
| #define | pNSet(n) p_NSet(n,currRing) |
| |
| #define | pOne() p_One(currRing) |
| |
| #define | pNormalize(p) p_Normalize(p,currRing) |
| |
| #define | pSize(p) p_Size(p,currRing) |
| |
| #define | pHomogen(p, varnum) p_Homogen(p,varnum,currRing) |
| | homogenizes p by multiplying certain powers of the varnum-th variable More...
|
| |
| #define | pIsHomogen(p) p_IsHomogen(p,currRing) |
| |
| #define | pVectorHasUnitB(p, k) p_VectorHasUnitB(p,k,currRing) |
| |
| #define | pVectorHasUnit(p, k, l) p_VectorHasUnit(p,k,l,currRing) |
| |
| #define | pDeleteComp(p, k) p_DeleteComp(p,k,currRing) |
| |
| #define | pSubst(p, n, e) p_Subst(p,n,e,currRing) |
| |
| #define | ppJet(p, m) pp_Jet(p,m,currRing) |
| |
| #define | pJet(p, m) p_Jet(p,m,currRing) |
| |
| #define | ppJetW(p, m, iv) pp_JetW(p,m,iv,currRing) |
| |
| #define | pJetW(p, m, iv) p_JetW(p,m,iv,currRing) |
| |
| #define | pMinDeg(p, w) p_MinDeg(p,w,currRing) |
| |
| #define | pSeries(n, p, u, w) p_Series(n,p,u,w,currRing) |
| |
| #define | pDegW(p, w) p_DegW(p,w,currRing) |
| | Deprecated: only for compatibility with older code! More...
|
| |
| #define | pVar(m) p_Var(m,currRing) |
| |
| #define | pEqualPolys(p1, p2) p_EqualPolys(p1,p2,currRing) |
| |
| #define | pTest(p) _p_Test(p, currRing, PDEBUG) |
| |
| #define | pLmTest(p) _p_LmTest(p, currRing, PDEBUG) |
| |