Build. Blocks
Comb. Appl.
HCA Proving
Arrangements
Branches
Classify
Coding
Deformations
Equidim Part
Existence
Finite Groups
Flatness
Genus
Hilbert Series
Membership
Nonnormal Locus
Normalization
Primdec
Puiseux
Plane Curves
Saturation
Solving
Space Curves
Spectrum
Moduli Spaces for Space Curve Singularities - An Example
Example: quasihomogeneous space curve singularity with presentation matrix

ring r = 0,(x,y,z),ds;
matrix M2[3][2] = z, 0, y^2, z-x^7, x^9, y;
LIB "spcurve.lib";
LIB "stratify.lib";
minor(M2,2);
==> _[1]=z2-x7z _[2]=yz _[3]=-y3+x9z-x16

The corresponding space curve has 2 branches given by (y3+x16,z), resp. by (z-x7,y). This can be seen, for instance by using primdecGTZ(minor(M2,2)). We compute a monomial basis of T1: list li=matrixT1(M2,3);
vdim(std(li[2])); // Tjurina number
==> 44

Next, we compute a versal family with fixed quasihomogeneous initial part: posweight(li[1],std(li[2]),0);
==> [1]: _[1,1]=z
_[1,2]=x^4*T(3)+x^5*T(2)+x^6*T(1)
_[2,1]=y^2+x^6*y*T(4)+x^11*T(8)+x^12*T(7)+x^13*T(6)+x^14*T(5)
_[2,2]=z-x^7
_[3,1]=x^9
_[3,2]=y
[2]: 8,5,2,2,10,7,4,1
The kernel of the Kodaira-Spencer map can be computed by setring r;
def KS=KSpencerKernel(M2); We change to the ring in the variables T(i) and define the integer vectors indicating the filtration ring rt=0,(T(1..8)),wp(8,5,2,2,10,7,4,1);
def KS=imap(reneu,KS);
intvec wr=10,8,7,5,4,2,2,1;
intvec ws=9,6,3,0;
int step=3; Finally, we compute the stratification: list l=stratify(KS,wr,ws,step);
size(l);
==> 12
Result: 12 Strata


Sao Carlos, 08/02 http://www.singular.uni-kl.de