My Project
Loading...
Searching...
No Matches
Functions
cfModResultant.h File Reference

modular resultant algorithm as described by G. More...

#include "canonicalform.h"

Go to the source code of this file.

Functions

CanonicalForm resultantFp (const CanonicalForm &A, const CanonicalForm &B, const Variable &x, bool prob=true)
 modular resultant algorihtm over Fp More...
 
CanonicalForm resultantZ (const CanonicalForm &A, const CanonicalForm &B, const Variable &x, bool prob=true)
 modular resultant algorihtm over Z More...
 

Detailed Description

modular resultant algorithm as described by G.

E. Collins in "The Calculation of multivariate polynomial resultants"

Author
Martin Lee

Definition in file cfModResultant.h.

Function Documentation

◆ resultantFp()

CanonicalForm resultantFp ( const CanonicalForm A,
const CanonicalForm B,
const Variable x,
bool  prob = true 
)

modular resultant algorihtm over Fp

Returns
resultantFp returns the resultant of A and B wrt. x
Parameters
[in]Asome poly
[in]Bsome poly
[in]xsome polynomial variable
[in]probif true use probabilistic algorithm

Definition at line 348 of file cfModResultant.cc.

350{
351 ASSERT (getCharacteristic() > 0, "characteristic > 0 expected");
352
353 if (A.isZero() || B.isZero())
354 return 0;
355
356 int degAx= degree (A, x);
357 int degBx= degree (B, x);
358 if (A.level() < x.level())
359 return power (A, degBx);
360 if (B.level() < x.level())
361 return power (B, degAx);
362
363 if (degAx == 0)
364 return power (A, degBx);
365 else if (degBx == 0)
366 return power (B, degAx);
367
368 if (A.isUnivariate() && B.isUnivariate() && A.level() == B.level())
369 return uniResultant (A, B);
370
371 CanonicalForm F= A;
373
374 CFMap M, N;
375 myCompress (F, G, M, N, x);
376
377 F= M (F);
378 G= M (G);
379
380 Variable y= Variable (2);
381
382 CanonicalForm GEval, FEval, recResult, H;
383 CanonicalForm newtonPoly= 1;
384 CanonicalForm modResult= 0;
385
386 Variable z= Variable (1);
387 int bound= degAx*degree (G, 2) + degree (F, 2)*degBx;
388
389 int p= getCharacteristic();
390 CanonicalForm minpoly;
391 Variable alpha= Variable (tmax (F.level(), G.level()) + 1);
392 bool algExt= hasFirstAlgVar (F, alpha) || hasFirstAlgVar (G, alpha);
393 CFGenerator * gen;
394 bool extOfExt= false;
396 CanonicalForm primElemAlpha, imPrimElemAlpha;
397 CFList source,dest;
398 if (!algExt && (p < (1 << 28)))
399 {
400 // pass to an extension of size at least 2^29
401 // for very very large input that is maybe too small though
402 int deg= ceil (29.0*((double) log (2)/log (p)))+1;
403 minpoly= randomIrredpoly (deg, z);
404 alpha= rootOf (minpoly);
405 AlgExtGenerator AlgExtGen (alpha);
406 gen= AlgExtGen.clone();
407 for (int i= 0; i < p; i++) // skip values from the prime field
408 (*gen).next();
409 }
410 else if (!algExt)
411 {
412 FFGenerator FFGen;
413 gen= FFGen.clone();
414 }
415 else
416 {
417 int deg= ceil (29.0*((double) log (2)/log (p)));
418 if (degree (getMipo (alpha)) < deg)
419 {
420 mpz_t field_size;
421 mpz_init (field_size);
422 mpz_ui_pow_ui (field_size, p,
423 deg + degree (getMipo (alpha)) - deg%degree (getMipo (alpha)));
424
425 // field_size needs to fit in an int because of mapUp, mapDown, length of lists etc.
426 if (mpz_fits_sint_p (field_size))
427 {
428 minpoly= randomIrredpoly (deg + degree (getMipo (alpha))
429 - deg%degree (getMipo (alpha)), z);
430 v= rootOf (minpoly);
431 Variable V_buf2;
432 bool primFail= false;
433 extOfExt= true;
434 primElemAlpha= primitiveElement (alpha, V_buf2, primFail);
435 ASSERT (!primFail, "failure in integer factorizer");
436 if (primFail)
437 ; //ERROR
438 else
439 imPrimElemAlpha= mapPrimElem (primElemAlpha, alpha, v);
440 F= mapUp (F, alpha, v, primElemAlpha, imPrimElemAlpha, source, dest);
441 G= mapUp (G, alpha, v, primElemAlpha, imPrimElemAlpha, source, dest);
442 }
443 else
444 {
445 deg= deg - deg % degree (getMipo (alpha));
446 mpz_ui_pow_ui (field_size, p, deg);
447 while (deg / degree (getMipo (alpha)) >= 2 && !mpz_fits_sint_p (field_size))
448 {
449 deg -= degree (getMipo (alpha));
450 mpz_ui_pow_ui (field_size, p, deg);
451 }
452 if (deg != degree (getMipo (alpha)))
453 {
454 minpoly= randomIrredpoly (deg, z);
455 v= rootOf (minpoly);
456 Variable V_buf2;
457 bool primFail= false;
458 extOfExt= true;
459 primElemAlpha= primitiveElement (alpha, V_buf2, primFail);
460 ASSERT (!primFail, "failure in integer factorizer");
461 if (primFail)
462 ; //ERROR
463 else
464 imPrimElemAlpha= mapPrimElem (primElemAlpha, alpha, v);
465 F= mapUp (F, alpha, v, primElemAlpha, imPrimElemAlpha, source, dest);
466 G= mapUp (G, alpha, v, primElemAlpha, imPrimElemAlpha, source, dest);
467 }
468 }
469 mpz_clear (field_size);
470 }
471 AlgExtGenerator AlgExtGen (v);
472 gen= AlgExtGen.clone();
473 for (int i= 0; i < p; i++)
474 (*gen).next();
475 }
476 int count= 0;
477 int equalCount= 0;
478 CanonicalForm point;
479 do
480 {
481 evalPoint (F, G, FEval, GEval, *gen);
482
483 recResult= resultantFp (FEval, GEval, z, prob);
484
485 H= newtonInterp ((*gen).item(), recResult, newtonPoly, modResult, y);
486
487 if (H == modResult)
488 equalCount++;
489 else
490 equalCount= 0;
491
492 count++;
493 if (count > bound || (prob && equalCount == 2 && !H.inCoeffDomain()))
494 {
495 if (!algExt && degree (H, alpha) <= 0)
496 break;
497 else if (algExt)
498 {
499 if (extOfExt && !isInExtension (H, imPrimElemAlpha, 1, primElemAlpha,
500 dest, source))
501 {
502 H= mapDown (H, primElemAlpha, imPrimElemAlpha, alpha, dest, source);
503 prune (v);
504 break;
505 }
506 else if (!extOfExt)
507 break;
508 }
509 }
510
511 modResult= H;
512 newtonPoly *= (y - (*gen).item());
513 if ((*gen).hasItems())
514 (*gen).next();
515 else
516 STICKYASSERT (0, "out of evaluation points");
517 } while (1);
518
519 delete gen;
520
521 return N (H);
522}
CanonicalForm power(const CanonicalForm &f, int n)
exponentiation
int degree(const CanonicalForm &f)
bool hasFirstAlgVar(const CanonicalForm &f, Variable &a)
check if poly f contains an algebraic variable a
Definition: cf_ops.cc:679
int FACTORY_PUBLIC getCharacteristic()
Definition: cf_char.cc:70
int i
Definition: cfEzgcd.cc:132
int myCompress(const CanonicalForm &F, const CanonicalForm &G, CFMap &M, CFMap &N, bool topLevel)
compressing two polynomials F and G, M is used for compressing, N to reverse the compression
Definition: cfModGcd.cc:91
int p
Definition: cfModGcd.cc:4078
const CanonicalForm CFMap CFMap & N
const CanonicalForm CFMap CFMap const Variable & x
CanonicalForm resultantFp(const CanonicalForm &A, const CanonicalForm &B, const Variable &x, bool prob)
modular resultant algorihtm over Fp
static CanonicalForm uniResultant(const CanonicalForm &F, const CanonicalForm &G)
static void evalPoint(const CanonicalForm &F, const CanonicalForm &G, CanonicalForm &FEval, CanonicalForm &GEval, CFGenerator &evalPoint)
const CanonicalForm & G
const CanonicalForm CFMap & M
static CanonicalForm newtonInterp(const CanonicalForm &alpha, const CanonicalForm &u, const CanonicalForm &newtonPoly, const CanonicalForm &oldInterPoly, const Variable &x)
#define STICKYASSERT(expression, message)
Definition: cf_assert.h:64
#define ASSERT(expression, message)
Definition: cf_assert.h:99
CanonicalForm randomIrredpoly(int i, const Variable &x)
computes a random monic irreducible univariate polynomial in x over Fp of degree i via NTL/FLINT
Definition: cf_irred.cc:26
static CanonicalForm bound(const CFMatrix &M)
Definition: cf_linsys.cc:460
CanonicalForm mapPrimElem(const CanonicalForm &primElem, const Variable &alpha, const Variable &beta)
compute the image of a primitive element of in . We assume .
Definition: cf_map_ext.cc:450
CanonicalForm primitiveElement(const Variable &alpha, Variable &beta, bool &fail)
determine a primitive element of , is a primitive element of a field which is isomorphic to
Definition: cf_map_ext.cc:342
static CanonicalForm mapDown(const CanonicalForm &F, const Variable &alpha, const CanonicalForm &G, CFList &source, CFList &dest)
the CanonicalForm G is the output of map_up, returns F considered as an element over ,...
Definition: cf_map_ext.cc:123
static CanonicalForm mapUp(const Variable &alpha, const Variable &beta)
and is a primitive element, returns the image of
Definition: cf_map_ext.cc:70
generate all elements in F_p(alpha) starting from 0
Definition: cf_generator.h:94
virtual class for generators
Definition: cf_generator.h:22
virtual CFGenerator * clone() const
Definition: cf_generator.h:30
virtual void next()
Definition: cf_generator.h:29
class CFMap
Definition: cf_map.h:85
factory's main class
Definition: canonicalform.h:86
CF_NO_INLINE bool isZero() const
bool inCoeffDomain() const
int level() const
level() returns the level of CO.
bool isUnivariate() const
generate all elements in F_p starting from 0
Definition: cf_generator.h:56
CFGenerator * clone() const
Definition: cf_generator.cc:52
factory's class for variables
Definition: variable.h:33
Variable alpha
Definition: facAbsBiFact.cc:51
const CanonicalForm int const CFList const Variable & y
Definition: facAbsFact.cc:53
CanonicalForm H
Definition: facAbsFact.cc:60
b *CanonicalForm B
Definition: facBivar.cc:52
const Variable & v
< [in] a sqrfree bivariate poly
Definition: facBivar.h:39
bool isInExtension(const CanonicalForm &F, const CanonicalForm &gamma, const int k, const CanonicalForm &delta, CFList &source, CFList &dest)
tests if F is not contained in a subfield defined by gamma (Fq case) or k (GF case)
template CanonicalForm tmax(const CanonicalForm &, const CanonicalForm &)
gmp_float log(const gmp_float &a)
Definition: mpr_complex.cc:343
const signed long ceil(const ampf< Precision > &x)
Definition: amp.h:788
int status int void size_t count
Definition: si_signals.h:59
#define A
Definition: sirandom.c:24
void prune(Variable &alpha)
Definition: variable.cc:261
CanonicalForm getMipo(const Variable &alpha, const Variable &x)
Definition: variable.cc:207
Variable rootOf(const CanonicalForm &mipo, char name)
returns a symbolic root of polynomial with name name Use it to define algebraic variables
Definition: variable.cc:162

◆ resultantZ()

CanonicalForm resultantZ ( const CanonicalForm A,
const CanonicalForm B,
const Variable x,
bool  prob = true 
)

modular resultant algorihtm over Z

Returns
resultantZ returns the resultant of A and B wrt. x
Parameters
[in]Asome poly
[in]Bsome poly
[in]xsome polynomial variable
[in]probif true use probabilistic algorithm

Definition at line 559 of file cfModResultant.cc.

561{
562 ASSERT (getCharacteristic() == 0, "characteristic > 0 expected");
563#ifndef NOASSERT
564 bool isRat= isOn (SW_RATIONAL);
565 On (SW_RATIONAL);
566 ASSERT (bCommonDen (A).isOne(), "input A is rational");
567 ASSERT (bCommonDen (B).isOne(), "input B is rational");
568 if (!isRat)
570#endif
571
572 int degAx= degree (A, x);
573 int degBx= degree (B, x);
574 if (A.level() < x.level())
575 return power (A, degBx);
576 if (B.level() < x.level())
577 return power (B, degAx);
578
579 if (degAx == 0)
580 return power (A, degBx);
581 else if (degBx == 0)
582 return power (B, degAx);
583
584 CanonicalForm F= A;
586
587 Variable X= x;
588 if (F.level() != x.level() || G.level() != x.level())
589 {
590 if (F.level() > G.level())
591 X= F.mvar();
592 else
593 X= G.mvar();
594 F= swapvar (F, X, x);
595 G= swapvar (G, X, x);
596 }
597
598 // now X is the main variable
599
600 CanonicalForm d= 0;
601 CanonicalForm dd= 0;
603 for (CFIterator i= F; i.hasTerms(); i++)
604 {
605 buf= oneNorm (i.coeff());
606 d= (buf > d) ? buf : d;
607 }
608 CanonicalForm e= 0, ee= 0;
609 for (CFIterator i= G; i.hasTerms(); i++)
610 {
611 buf= oneNorm (i.coeff());
612 e= (buf > e) ? buf : e;
613 }
614 d= power (d, degBx);
615 e= power (e, degAx);
617 for (int i= degBx + degAx; i > 1; i--)
618 bound *= i;
619 bound *= d*e;
620 bound *= 2;
621
622 bool onRational= isOn (SW_RATIONAL);
623 if (onRational)
625 int i = cf_getNumBigPrimes() - 1;
626 int p;
627 CanonicalForm l= lc (F)*lc(G);
628 CanonicalForm resultModP, q (0), newResult, newQ;
630 int equalCount= 0;
631 CanonicalForm test, newTest;
632 int count= 0;
633 do
634 {
635 p = cf_getBigPrime( i );
636 i--;
637 while ( i >= 0 && mod( l, p ) == 0)
638 {
639 p = cf_getBigPrime( i );
640 i--;
641 }
642
643 if (i <= 0)
644 return resultant (A, B, x);
645
647
648 TIMING_START (fac_resultant_p);
649 resultModP= resultantFp (mapinto (F), mapinto (G), X, prob);
650 TIMING_END_AND_PRINT (fac_resultant_p, "time to compute resultant mod p: ");
651
653
654 count++;
655 if ( q.isZero() )
656 {
657 result= mapinto(resultModP);
658 q= p;
659 }
660 else
661 {
662 chineseRemainder( result, q, mapinto (resultModP), p, newResult, newQ );
663 q= newQ;
664 result= newResult;
666 if (test != newTest)
667 {
668 newTest= test;
669 equalCount= 0;
670 }
671 else
672 equalCount++;
673 if (newQ > bound || (prob && equalCount == 2))
674 {
675 result= test;
676 break;
677 }
678 }
679 } while (1);
680
681 if (onRational)
682 On (SW_RATIONAL);
683 return swapvar (result, X, x);
684}
bool isOn(int sw)
switches
void On(int sw)
switches
void Off(int sw)
switches
CanonicalForm mapinto(const CanonicalForm &f)
CanonicalForm lc(const CanonicalForm &f)
CF_NO_INLINE FACTORY_PUBLIC CanonicalForm mod(const CanonicalForm &, const CanonicalForm &)
void FACTORY_PUBLIC setCharacteristic(int c)
Definition: cf_char.cc:28
CanonicalForm FACTORY_PUBLIC swapvar(const CanonicalForm &, const Variable &, const Variable &)
swapvar() - swap variables x1 and x2 in f.
Definition: cf_ops.cc:168
int l
Definition: cfEzgcd.cc:100
CanonicalForm test
Definition: cfModGcd.cc:4096
static CanonicalForm oneNorm(const CanonicalForm &F)
static CanonicalForm symmetricRemainder(const CanonicalForm &f, const CanonicalForm &q)
CanonicalForm bCommonDen(const CanonicalForm &f)
CanonicalForm bCommonDen ( const CanonicalForm & f )
void FACTORY_PUBLIC chineseRemainder(const CanonicalForm &x1, const CanonicalForm &q1, const CanonicalForm &x2, const CanonicalForm &q2, CanonicalForm &xnew, CanonicalForm &qnew)
void chineseRemainder ( const CanonicalForm & x1, const CanonicalForm & q1, const CanonicalForm & x2,...
Definition: cf_chinese.cc:57
CanonicalForm FACTORY_PUBLIC resultant(const CanonicalForm &f, const CanonicalForm &g, const Variable &x)
CanonicalForm resultant ( const CanonicalForm & f, const CanonicalForm & g, const Variable & x )
static const int SW_RATIONAL
set to 1 for computations over Q
Definition: cf_defs.h:31
int cf_getBigPrime(int i)
Definition: cf_primes.cc:39
int cf_getNumBigPrimes()
Definition: cf_primes.cc:45
class to iterate through CanonicalForm's
Definition: cf_iter.h:44
Variable mvar() const
mvar() returns the main variable of CO or Variable() if CO is in a base domain.
return result
Definition: facAbsBiFact.cc:75
int status int void * buf
Definition: si_signals.h:59
#define TIMING_START(t)
Definition: timing.h:92
#define TIMING_END_AND_PRINT(t, msg)
Definition: timing.h:94