My Project
Loading...
Searching...
No Matches
Functions
cfGcdAlgExt.h File Reference

GCD over Q(a) More...

#include "canonicalform.h"
#include "variable.h"

Go to the source code of this file.

Functions

CanonicalForm QGCD (const CanonicalForm &, const CanonicalForm &)
 gcd over Q(a) More...
 
void tryInvert (const CanonicalForm &, const CanonicalForm &, CanonicalForm &, bool &)
 
void tryBrownGCD (const CanonicalForm &F, const CanonicalForm &G, const CanonicalForm &M, CanonicalForm &result, bool &fail, bool topLevel=true)
 modular gcd over F_p[x]/(M) for not necessarily irreducible M. If a zero divisor is encountered fail is set to true. More...
 
bool isLess (int *a, int *b, int lower, int upper)
 
bool isEqual (int *a, int *b, int lower, int upper)
 
CanonicalForm firstLC (const CanonicalForm &f)
 

Detailed Description

GCD over Q(a)

ABSTRACT: Implementation of Encarnacion's GCD algorithm over number fields, see M.J. Encarnacion "Computing GCDs of polynomials over number fields", extended to the multivariate case.

See also
cfNTLzzpEXGCD.h

Definition in file cfGcdAlgExt.h.

Function Documentation

◆ firstLC()

CanonicalForm firstLC ( const CanonicalForm f)

Definition at line 955 of file cfGcdAlgExt.cc.

956{ // returns the leading coefficient (LC) of level <= 1
957 CanonicalForm ret = f;
958 while(ret.level() > 1)
959 ret = LC(ret);
960 return ret;
961}
CanonicalForm LC(const CanonicalForm &f)
FILE * f
Definition: checklibs.c:9
factory's main class
Definition: canonicalform.h:86
int level() const
level() returns the level of CO.

◆ isEqual()

bool isEqual ( int *  a,
int *  b,
int  lower,
int  upper 
)

Definition at line 946 of file cfGcdAlgExt.cc.

947{ // compares the degree vectors a,b on the specified part. Note: x(i+1) > x(i)
948 for(int i=lower; i<=upper; i++)
949 if(a[i] != b[i])
950 return false;
951 return true;
952}
int i
Definition: cfEzgcd.cc:132
CanonicalForm b
Definition: cfModGcd.cc:4103

◆ isLess()

bool isLess ( int *  a,
int *  b,
int  lower,
int  upper 
)

Definition at line 935 of file cfGcdAlgExt.cc.

936{ // compares the degree vectors a,b on the specified part. Note: x(i+1) > x(i)
937 for(int i=upper; i>=lower; i--)
938 if(a[i] == b[i])
939 continue;
940 else
941 return a[i] < b[i];
942 return true;
943}

◆ QGCD()

gcd over Q(a)

Definition at line 730 of file cfGcdAlgExt.cc.

731{ // f,g in Q(a)[x1,...,xn]
732 if(F.isZero())
733 {
734 if(G.isZero())
735 return G; // G is zero
736 if(G.inCoeffDomain())
737 return CanonicalForm(1);
738 CanonicalForm lcinv= 1/Lc (G);
739 return G*lcinv; // return monic G
740 }
741 if(G.isZero()) // F is non-zero
742 {
743 if(F.inCoeffDomain())
744 return CanonicalForm(1);
745 CanonicalForm lcinv= 1/Lc (F);
746 return F*lcinv; // return monic F
747 }
748 if(F.inCoeffDomain() || G.inCoeffDomain())
749 return CanonicalForm(1);
750 // here: both NOT inCoeffDomain
751 CanonicalForm f, g, tmp, M, q, D, Dp, cl, newq, mipo;
752 int p, i;
753 int *bound, *other; // degree vectors
754 bool fail;
755 bool off_rational=!isOn(SW_RATIONAL);
756 On( SW_RATIONAL ); // needed by bCommonDen
757 f = F * bCommonDen(F);
758 g = G * bCommonDen(G);
760 CanonicalForm contf= myicontent (f);
761 CanonicalForm contg= myicontent (g);
762 f /= contf;
763 g /= contg;
764 CanonicalForm gcdcfcg= myicontent (contf, contg);
765 TIMING_END_AND_PRINT (alg_content, "time for content in alg gcd: ")
766 Variable a, b;
768 {
769 if(hasFirstAlgVar(g,b))
770 {
771 if(b.level() > a.level())
772 a = b;
773 }
774 }
775 else
776 {
777 if(!hasFirstAlgVar(g,a))// both not in extension
778 {
779 Off( SW_RATIONAL );
780 Off( SW_USE_QGCD );
781 tmp = gcdcfcg*gcd( f, g );
782 On( SW_USE_QGCD );
783 if (off_rational) Off(SW_RATIONAL);
784 return tmp;
785 }
786 }
787 // here: a is the biggest alg. var in f and g AND some of f,g is in extension
788 setReduce(a,false); // do not reduce expressions modulo mipo
789 tmp = getMipo(a);
790 M = tmp * bCommonDen(tmp);
791 // here: f, g in Z[a][x1,...,xn], M in Z[a] not necessarily monic
792 Off( SW_RATIONAL ); // needed by mod
793 // calculate upper bound for degree vector of gcd
794 int mv = f.level(); i = g.level();
795 if(i > mv)
796 mv = i;
797 // here: mv is level of the largest variable in f, g
798 bound = new int[mv+1]; // 'bound' could be indexed from 0 to mv, but we will only use from 1 to mv
799 other = new int[mv+1];
800 for(int i=1; i<=mv; i++) // initialize 'bound', 'other' with zeros
801 bound[i] = other[i] = 0;
802 leadDeg(f,bound); // 'bound' is set the leading degree vector of f
803 leadDeg(g,other);
804 for(int i=1; i<=mv; i++) // entry at i=0 not visited
805 if(other[i] < bound[i])
806 bound[i] = other[i];
807 // now 'bound' is the smaller vector
808 cl = lc(M) * lc(f) * lc(g);
809 q = 1;
810 D = 0;
812 bool equal= false;
813 for( i=cf_getNumBigPrimes()-1; i>-1; i-- )
814 {
815 p = cf_getBigPrime(i);
816 if( mod( cl, p ).isZero() ) // skip lc-bad primes
817 continue;
818 fail = false;
820 mipo = mapinto(M);
821 mipo /= mipo.lc();
822 // here: mipo is monic
823 TIMING_START (alg_gcd_p)
824 tryBrownGCD( mapinto(f), mapinto(g), mipo, Dp, fail );
825 TIMING_END_AND_PRINT (alg_gcd_p, "time for alg gcd mod p: ")
826 if( fail ) // mipo splits in char p
827 {
829 continue;
830 }
831 if( Dp.inCoeffDomain() ) // early termination
832 {
833 tryInvert(Dp,mipo,tmp,fail); // check if zero divisor
835 if(fail)
836 continue;
837 setReduce(a,true);
838 if (off_rational) Off(SW_RATIONAL); else On(SW_RATIONAL);
839 delete[] other;
840 delete[] bound;
841 return gcdcfcg;
842 }
844 // here: Dp NOT inCoeffDomain
845 for(int i=1; i<=mv; i++)
846 other[i] = 0; // reset (this is necessary, because some entries may not be updated by call to leadDeg)
847 leadDeg(Dp,other);
848
849 if(isEqual(bound, other, 1, mv)) // equal
850 {
851 chineseRemainder( D, q, mapinto(Dp), p, tmp, newq );
852 // tmp = Dp mod p
853 // tmp = D mod q
854 // newq = p*q
855 q = newq;
856 if( D != tmp )
857 D = tmp;
858 On( SW_RATIONAL );
859 TIMING_START (alg_reconstruction)
860 tmp = Farey( D, q ); // Farey
861 tmp *= bCommonDen (tmp);
862 TIMING_END_AND_PRINT (alg_reconstruction,
863 "time for rational reconstruction in alg gcd: ")
864 setReduce(a,true); // reduce expressions modulo mipo
865 On( SW_RATIONAL ); // needed by fdivides
866 if (test != tmp)
867 test= tmp;
868 else
869 equal= true; // modular image did not add any new information
870 TIMING_START (alg_termination)
871#ifdef HAVE_NTL
872#ifdef HAVE_FLINT
873 if (equal && tmp.isUnivariate() && f.isUnivariate() && g.isUnivariate()
874 && f.level() == tmp.level() && tmp.level() == g.level())
875 {
877 newtonDivrem (f, tmp, Q, R);
878 if (R.isZero())
879 {
880 newtonDivrem (g, tmp, Q, R);
881 if (R.isZero())
882 {
884 setReduce (a,true);
885 if (off_rational) Off(SW_RATIONAL); else On(SW_RATIONAL);
886 TIMING_END_AND_PRINT (alg_termination,
887 "time for successful termination test in alg gcd: ")
888 delete[] other;
889 delete[] bound;
890 return tmp*gcdcfcg;
891 }
892 }
893 }
894 else
895#endif
896#endif
897 if(equal && fdivides( tmp, f ) && fdivides( tmp, g )) // trial division
898 {
899 Off( SW_RATIONAL );
900 setReduce(a,true);
901 if (off_rational) Off(SW_RATIONAL); else On(SW_RATIONAL);
902 TIMING_END_AND_PRINT (alg_termination,
903 "time for successful termination test in alg gcd: ")
904 delete[] other;
905 delete[] bound;
906 return tmp*gcdcfcg;
907 }
908 TIMING_END_AND_PRINT (alg_termination,
909 "time for unsuccessful termination test in alg gcd: ")
910 Off( SW_RATIONAL );
911 setReduce(a,false); // do not reduce expressions modulo mipo
912 continue;
913 }
914 if( isLess(bound, other, 1, mv) ) // current prime unlucky
915 continue;
916 // here: isLess(other, bound, 1, mv) ) ==> all previous primes unlucky
917 q = p;
918 D = mapinto(Dp); // shortcut CRA // shortcut CRA
919 for(int i=1; i<=mv; i++) // tighten bound
920 bound[i] = other[i];
921 }
922 // hopefully, we never reach this point
923 setReduce(a,true);
924 delete[] other;
925 delete[] bound;
926 Off( SW_USE_QGCD );
927 D = gcdcfcg*gcd( f, g );
928 On( SW_USE_QGCD );
929 if (off_rational) Off(SW_RATIONAL); else On(SW_RATIONAL);
930 return D;
931}
bool isOn(int sw)
switches
void On(int sw)
switches
void Off(int sw)
switches
CanonicalForm mapinto(const CanonicalForm &f)
CanonicalForm lc(const CanonicalForm &f)
CF_NO_INLINE FACTORY_PUBLIC CanonicalForm mod(const CanonicalForm &, const CanonicalForm &)
void FACTORY_PUBLIC setCharacteristic(int c)
Definition: cf_char.cc:28
bool hasFirstAlgVar(const CanonicalForm &f, Variable &a)
check if poly f contains an algebraic variable a
Definition: cf_ops.cc:679
CanonicalForm Lc(const CanonicalForm &f)
else
Definition: cfGcdAlgExt.cc:195
bool isLess(int *a, int *b, int lower, int upper)
Definition: cfGcdAlgExt.cc:935
static void leadDeg(const CanonicalForm &f, int degs[])
Definition: cfGcdAlgExt.cc:372
bool isEqual(int *a, int *b, int lower, int upper)
Definition: cfGcdAlgExt.cc:946
static CanonicalForm myicontent(const CanonicalForm &f, const CanonicalForm &c)
Definition: cfGcdAlgExt.cc:671
if(topLevel)
Definition: cfGcdAlgExt.cc:75
return
Definition: cfGcdAlgExt.cc:218
const CanonicalForm & G
Definition: cfGcdAlgExt.cc:55
void tryInvert(const CanonicalForm &F, const CanonicalForm &M, CanonicalForm &inv, bool &fail)
Definition: cfGcdAlgExt.cc:221
const CanonicalForm CFMap & M
Definition: cfGcdAlgExt.cc:55
int p
Definition: cfModGcd.cc:4078
return false
Definition: cfModGcd.cc:84
cl
Definition: cfModGcd.cc:4100
g
Definition: cfModGcd.cc:4090
CanonicalForm gcdcfcg
Definition: cfModGcd.cc:4101
bool equal
Definition: cfModGcd.cc:4126
CanonicalForm test
Definition: cfModGcd.cc:4096
CanonicalForm bCommonDen(const CanonicalForm &f)
CanonicalForm bCommonDen ( const CanonicalForm & f )
bool fdivides(const CanonicalForm &f, const CanonicalForm &g)
bool fdivides ( const CanonicalForm & f, const CanonicalForm & g )
void FACTORY_PUBLIC chineseRemainder(const CanonicalForm &x1, const CanonicalForm &q1, const CanonicalForm &x2, const CanonicalForm &q2, CanonicalForm &xnew, CanonicalForm &qnew)
void chineseRemainder ( const CanonicalForm & x1, const CanonicalForm & q1, const CanonicalForm & x2,...
Definition: cf_chinese.cc:57
static const int SW_USE_QGCD
set to 1 to use Encarnacion GCD over Q(a)
Definition: cf_defs.h:43
static const int SW_RATIONAL
set to 1 for computations over Q
Definition: cf_defs.h:31
static CanonicalForm bound(const CFMatrix &M)
Definition: cf_linsys.cc:460
int cf_getBigPrime(int i)
Definition: cf_primes.cc:39
int cf_getNumBigPrimes()
Definition: cf_primes.cc:45
CF_NO_INLINE bool isZero() const
bool inCoeffDomain() const
CanonicalForm lc() const
CanonicalForm CanonicalForm::lc (), Lc (), LC (), LC ( v ) const.
factory's class for variables
Definition: variable.h:33
int level() const
Definition: variable.h:49
CanonicalForm mipo
Definition: facAlgExt.cc:57
CanonicalForm alg_content(const CanonicalForm &f, const CFList &as)
Definition: facAlgFunc.cc:42
for(j=0;j< factors.length();j++)
Definition: facHensel.cc:129
void newtonDivrem(const CanonicalForm &F, const CanonicalForm &G, CanonicalForm &Q, CanonicalForm &R)
division with remainder of univariate polynomials over Q and Q(a) using Newton inversion,...
Definition: facMul.cc:346
bool isZero(const CFArray &A)
checks if entries of A are zero
static number Farey(number, number, const coeffs)
Definition: flintcf_Q.cc:445
#define D(A)
Definition: gentable.cc:131
#define R
Definition: sirandom.c:27
#define Q
Definition: sirandom.c:26
#define TIMING_START(t)
Definition: timing.h:92
#define TIMING_END_AND_PRINT(t, msg)
Definition: timing.h:94
void setReduce(const Variable &alpha, bool reduce)
Definition: variable.cc:238
CanonicalForm getMipo(const Variable &alpha, const Variable &x)
Definition: variable.cc:207
int gcd(int a, int b)
Definition: walkSupport.cc:836

◆ tryBrownGCD()

void tryBrownGCD ( const CanonicalForm F,
const CanonicalForm G,
const CanonicalForm M,
CanonicalForm result,
bool &  fail,
bool  topLevel = true 
)

modular gcd over F_p[x]/(M) for not necessarily irreducible M. If a zero divisor is encountered fail is set to true.

Definition at line 386 of file cfGcdAlgExt.cc.

387{ // assume F,G are multivariate polys over Z/p(a) for big prime p, M "univariate" polynomial in an algebraic variable
388 // M is assumed to be monic
389 if(F.isZero())
390 {
391 if(G.isZero())
392 {
393 result = G; // G is zero
394 return;
395 }
396 if(G.inCoeffDomain())
397 {
398 tryInvert(G,M,result,fail);
399 if(fail)
400 return;
401 result = 1;
402 return;
403 }
404 // try to make G monic modulo M
405 CanonicalForm inv;
406 tryInvert(Lc(G),M,inv,fail);
407 if(fail)
408 return;
409 result = inv*G;
410 result= reduce (result, M);
411 return;
412 }
413 if(G.isZero()) // F is non-zero
414 {
415 if(F.inCoeffDomain())
416 {
417 tryInvert(F,M,result,fail);
418 if(fail)
419 return;
420 result = 1;
421 return;
422 }
423 // try to make F monic modulo M
424 CanonicalForm inv;
425 tryInvert(Lc(F),M,inv,fail);
426 if(fail)
427 return;
428 result = inv*F;
429 result= reduce (result, M);
430 return;
431 }
432 // here: F,G both nonzero
433 if(F.inCoeffDomain())
434 {
435 tryInvert(F,M,result,fail);
436 if(fail)
437 return;
438 result = 1;
439 return;
440 }
441 if(G.inCoeffDomain())
442 {
443 tryInvert(G,M,result,fail);
444 if(fail)
445 return;
446 result = 1;
447 return;
448 }
449 TIMING_START (alg_compress)
450 CFMap MM,NN;
451 int lev= myCompress (F, G, MM, NN, topLevel);
452 if (lev == 0)
453 {
454 result= 1;
455 return;
456 }
457 CanonicalForm f=MM(F);
458 CanonicalForm g=MM(G);
459 TIMING_END_AND_PRINT (alg_compress, "time to compress in alg gcd: ")
460 // here: f,g are compressed
461 // compute largest variable in f or g (least one is Variable(1))
462 int mv = f.level();
463 if(g.level() > mv)
464 mv = g.level();
465 // here: mv is level of the largest variable in f, g
466 Variable v1= Variable (1);
467#ifdef HAVE_NTL
468 Variable v= M.mvar();
469 int ch=getCharacteristic();
470 if (fac_NTL_char != ch)
471 {
472 fac_NTL_char= ch;
473 zz_p::init (ch);
474 }
475 zz_pX NTLMipo= convertFacCF2NTLzzpX (M);
476 zz_pE::init (NTLMipo);
477 zz_pEX NTLResult;
478 zz_pEX NTLF;
479 zz_pEX NTLG;
480#endif
481 if(mv == 1) // f,g univariate
482 {
483 TIMING_START (alg_euclid_p)
484#ifdef HAVE_NTL
485 NTLF= convertFacCF2NTLzz_pEX (f, NTLMipo);
486 NTLG= convertFacCF2NTLzz_pEX (g, NTLMipo);
487 tryNTLGCD (NTLResult, NTLF, NTLG, fail);
488 if (fail)
489 return;
490 result= convertNTLzz_pEX2CF (NTLResult, f.mvar(), v);
491#else
492 tryEuclid(f,g,M,result,fail);
493 if(fail)
494 return;
495#endif
496 TIMING_END_AND_PRINT (alg_euclid_p, "time for euclidean alg mod p: ")
497 result= NN (reduce (result, M)); // do not forget to map back
498 return;
499 }
500 TIMING_START (alg_content_p)
501 // here: mv > 1
502 CanonicalForm cf = tryvcontent(f, Variable(2), M, fail); // cf is univariate poly in var(1)
503 if(fail)
504 return;
505 CanonicalForm cg = tryvcontent(g, Variable(2), M, fail);
506 if(fail)
507 return;
509#ifdef HAVE_NTL
510 NTLF= convertFacCF2NTLzz_pEX (cf, NTLMipo);
511 NTLG= convertFacCF2NTLzz_pEX (cg, NTLMipo);
512 tryNTLGCD (NTLResult, NTLF, NTLG, fail);
513 if (fail)
514 return;
515 c= convertNTLzz_pEX2CF (NTLResult, v1, v);
516#else
517 tryEuclid(cf,cg,M,c,fail);
518 if(fail)
519 return;
520#endif
521 // f /= cf
522 f.tryDiv (cf, M, fail);
523 if(fail)
524 return;
525 // g /= cg
526 g.tryDiv (cg, M, fail);
527 if(fail)
528 return;
529 TIMING_END_AND_PRINT (alg_content_p, "time for content in alg gcd mod p: ")
530 if(f.inCoeffDomain())
531 {
532 tryInvert(f,M,result,fail);
533 if(fail)
534 return;
535 result = NN(c);
536 return;
537 }
538 if(g.inCoeffDomain())
539 {
540 tryInvert(g,M,result,fail);
541 if(fail)
542 return;
543 result = NN(c);
544 return;
545 }
546 int L[mv+1];
547 int N[mv+1];
548 for(int i=2; i<=mv; i++)
549 L[i] = N[i] = 0;
550 leadDeg(f, L);
551 leadDeg(g, N);
552 CanonicalForm gamma;
553 TIMING_START (alg_euclid_p)
554#ifdef HAVE_NTL
555 NTLF= convertFacCF2NTLzz_pEX (firstLC (f), NTLMipo);
556 NTLG= convertFacCF2NTLzz_pEX (firstLC (g), NTLMipo);
557 tryNTLGCD (NTLResult, NTLF, NTLG, fail);
558 if (fail)
559 return;
560 gamma= convertNTLzz_pEX2CF (NTLResult, v1, v);
561#else
562 tryEuclid( firstLC(f), firstLC(g), M, gamma, fail );
563 if(fail)
564 return;
565#endif
566 TIMING_END_AND_PRINT (alg_euclid_p, "time for gcd of lcs in alg mod p: ")
567 for(int i=2; i<=mv; i++) // entries at i=0,1 not visited
568 if(N[i] < L[i])
569 L[i] = N[i];
570 // L is now upper bound for degrees of gcd
571 int dg_im[mv+1]; // for the degree vector of the image we don't need any entry at i=1
572 for(int i=2; i<=mv; i++)
573 dg_im[i] = 0; // initialize
574 CanonicalForm gamma_image, m=1;
575 CanonicalForm gm=0;
576 CanonicalForm g_image, alpha, gnew;
577 FFGenerator gen = FFGenerator();
578 Variable x= Variable (1);
579 bool divides= true;
580 for(FFGenerator gen = FFGenerator(); gen.hasItems(); gen.next())
581 {
582 alpha = gen.item();
583 gamma_image = reduce(gamma(alpha, x),M); // plug in alpha for var(1)
584 if(gamma_image.isZero()) // skip lc-bad points var(1)-alpha
585 continue;
586 TIMING_START (alg_recursion_p)
587 tryBrownGCD( f(alpha, x), g(alpha, x), M, g_image, fail, false ); // recursive call with one var less
588 TIMING_END_AND_PRINT (alg_recursion_p,
589 "time for recursive calls in alg gcd mod p: ")
590 if(fail)
591 return;
592 g_image = reduce(g_image, M);
593 if(g_image.inCoeffDomain()) // early termination
594 {
595 tryInvert(g_image,M,result,fail);
596 if(fail)
597 return;
598 result = NN(c);
599 return;
600 }
601 for(int i=2; i<=mv; i++)
602 dg_im[i] = 0; // reset (this is necessary, because some entries may not be updated by call to leadDeg)
603 leadDeg(g_image, dg_im);
604 if(isEqual(dg_im, L, 2, mv))
605 {
606 CanonicalForm inv;
607 tryInvert (firstLC (g_image), M, inv, fail);
608 if (fail)
609 return;
610 g_image *= inv;
611 g_image *= gamma_image; // multiply by multiple of image lc(gcd)
612 g_image= reduce (g_image, M);
613 TIMING_START (alg_newton_p)
614 gnew= tryNewtonInterp (alpha, g_image, m, gm, x, M, fail);
615 TIMING_END_AND_PRINT (alg_newton_p,
616 "time for Newton interpolation in alg gcd mod p: ")
617 // gnew = gm mod m
618 // gnew = g_image mod var(1)-alpha
619 // mnew = m * (var(1)-alpha)
620 if(fail)
621 return;
622 m *= (x - alpha);
623 if((firstLC(gnew) == gamma) || (gnew == gm)) // gnew did not change
624 {
625 TIMING_START (alg_termination_p)
626 cf = tryvcontent(gnew, Variable(2), M, fail);
627 if(fail)
628 return;
629 divides = true;
630 g_image= gnew;
631 g_image.tryDiv (cf, M, fail);
632 if(fail)
633 return;
634 divides= tryFdivides (g_image,f, M, fail); // trial division (f)
635 if(fail)
636 return;
637 if(divides)
638 {
639 bool divides2= tryFdivides (g_image,g, M, fail); // trial division (g)
640 if(fail)
641 return;
642 if(divides2)
643 {
644 result = NN(reduce (c*g_image, M));
645 TIMING_END_AND_PRINT (alg_termination_p,
646 "time for successful termination test in alg gcd mod p: ")
647 return;
648 }
649 }
650 TIMING_END_AND_PRINT (alg_termination_p,
651 "time for unsuccessful termination test in alg gcd mod p: ")
652 }
653 gm = gnew;
654 continue;
655 }
656
657 if(isLess(L, dg_im, 2, mv)) // dg_im > L --> current point unlucky
658 continue;
659
660 // here: isLess(dg_im, L, 2, mv) --> all previous points were unlucky
661 m = CanonicalForm(1); // reset
662 gm = 0; // reset
663 for(int i=2; i<=mv; i++) // tighten bound
664 L[i] = dg_im[i];
665 }
666 // we are out of evaluation points
667 fail = true;
668}
zz_pEX convertFacCF2NTLzz_pEX(const CanonicalForm &f, const zz_pX &mipo)
Definition: NTLconvert.cc:1064
CanonicalForm convertNTLzz_pEX2CF(const zz_pEX &f, const Variable &x, const Variable &alpha)
Definition: NTLconvert.cc:1092
zz_pX convertFacCF2NTLzzpX(const CanonicalForm &f)
Definition: NTLconvert.cc:105
VAR long fac_NTL_char
Definition: NTLconvert.cc:46
CanonicalForm reduce(const CanonicalForm &f, const CanonicalForm &M)
polynomials in M.mvar() are considered coefficients M univariate monic polynomial the coefficients of...
Definition: cf_ops.cc:660
int level(const CanonicalForm &f)
int FACTORY_PUBLIC getCharacteristic()
Definition: cf_char.cc:70
int m
Definition: cfEzgcd.cc:128
const CanonicalForm CFMap CFMap & N
Definition: cfGcdAlgExt.cc:56
static CanonicalForm tryNewtonInterp(const CanonicalForm &alpha, const CanonicalForm &u, const CanonicalForm &newtonPoly, const CanonicalForm &oldInterPoly, const Variable &x, const CanonicalForm &M, bool &fail)
Definition: cfGcdAlgExt.cc:357
const CanonicalForm CFMap CFMap bool topLevel
Definition: cfGcdAlgExt.cc:57
static CanonicalForm tryvcontent(const CanonicalForm &f, const Variable &x, const CanonicalForm &M, bool &fail)
CanonicalForm firstLC(const CanonicalForm &f)
Definition: cfGcdAlgExt.cc:955
int myCompress(const CanonicalForm &F, const CanonicalForm &G, CFMap &M, CFMap &N, bool topLevel)
compressing two polynomials F and G, M is used for compressing, N to reverse the compression
Definition: cfModGcd.cc:91
Variable x
Definition: cfModGcd.cc:4082
CanonicalForm cf
Definition: cfModGcd.cc:4083
CanonicalForm cg
Definition: cfModGcd.cc:4083
void tryNTLGCD(zz_pEX &x, const zz_pEX &a, const zz_pEX &b, bool &fail)
compute the GCD x of a and b, fail is set to true if a zero divisor is encountered
bool tryFdivides(const CanonicalForm &f, const CanonicalForm &g, const CanonicalForm &M, bool &fail)
same as fdivides but handles zero divisors in Z_p[t]/(f)[x1,...,xn] for reducible f
class CFMap
Definition: cf_map.h:85
Variable mvar() const
mvar() returns the main variable of CO or Variable() if CO is in a base domain.
CanonicalForm & tryDiv(const CanonicalForm &, const CanonicalForm &, bool &)
same as divremt but handles zero divisors in case we are in Z_p[x]/(f) where f is not irreducible
generate all elements in F_p starting from 0
Definition: cf_generator.h:56
Variable alpha
Definition: facAbsBiFact.cc:51
return result
Definition: facAbsBiFact.cc:75
const Variable & v
< [in] a sqrfree bivariate poly
Definition: facBivar.h:39
ListNode * next
Definition: janet.h:31

◆ tryInvert()

void tryInvert ( const CanonicalForm F,
const CanonicalForm M,
CanonicalForm inv,
bool &  fail 
)

Definition at line 221 of file cfGcdAlgExt.cc.

222{ // F, M are required to be "univariate" polynomials in an algebraic variable
223 // we try to invert F modulo M
224 if(F.inBaseDomain())
225 {
226 if(F.isZero())
227 {
228 fail = true;
229 return;
230 }
231 inv = 1/F;
232 return;
233 }
235 Variable a = M.mvar();
236 Variable x = Variable(1);
237 if(!extgcd( replacevar( F, a, x ), replacevar( M, a, x ), inv, b ).isOne())
238 fail = true;
239 else
240 inv = replacevar( inv, x, a ); // change back to alg var
241}
CanonicalForm FACTORY_PUBLIC replacevar(const CanonicalForm &, const Variable &, const Variable &)
CanonicalForm replacevar ( const CanonicalForm & f, const Variable & x1, const Variable & x2 )
Definition: cf_ops.cc:271
CanonicalForm extgcd(const CanonicalForm &f, const CanonicalForm &g, CanonicalForm &a, CanonicalForm &b)
CanonicalForm extgcd ( const CanonicalForm & f, const CanonicalForm & g, CanonicalForm & a,...
Definition: cfUnivarGcd.cc:174
bool inBaseDomain() const